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Abstract

Optimized Schwarz Methods (OSM) stand among
the most popular substructuring domain decom-
position strategies for the simulation of wave
propagation in harmonic regime. Considering
arbitrary non-overlapping subdomain partitions
with such methods, the presence of so-called
cross points, where three or more subdomains
could be adjacent, have raised serious practical
and theoretical issues.

We will describe a novel approach to OSM
that provides a systematic and robust treatment
of cross points as well as a complete analytical
framework. A salient new feature is the use of
a non-local exchange operator to enforce trans-
mission conditions and maintain subdomain cou-
pling. The associated theory covers several pre-
existing variants of OSM, including Després' orig-
inal algorithm, and yields new convergence bounds.
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1 Optimized Schwarz Method

When considering a wave propagation problem
∆u+ω2u = −f in Ω ⊂ Rd with ∂nu = 0 on ∂Ω,
substructuring strategies start from a partition
Ω = ∪J

j=1Ωj into non-overlapping subdomains
(Ωj ∩Ωk = ∅ for j 6= k) to derive a collection of
local subproblems, for j = 1 . . . J,

∆u+ ω2u = −f in Ωj ,

∂nu = 0 on ∂Ωj ∩ ∂Ω
(1)

supplemented with transmission conditions through
interfaces: denoting Γj := ∂Ωj and nj the nor-
mal to Γj pointing outside Ωj , for all j, k with
j 6= k we impose

∂nju|Γj = −∂nk
u|Γk

u|Γj = u|Γk
on Γj ∩ Γk

(2)

The main idea of the Optimized Schwarz Method

Figure 1: A subdomain partition with cross-
points as considered in this work

à la Després [12] is to reformulate (1)-(2) in
terms of tuples of ingoing/outgoing Robin traces

p± = (±∂nju|Γj + iωu|Γj )j=1...J. (3)

As regards local wave equations, this is achieved
by means of scattering maps Sj de�ned by their
action on solutions to the homogeneous wave
equation

Sj(−∂njψ|Γj + iωψ|Γj ) := ∂njψ|Γj + iωψ|Γj

∀ψ satisfying: ∆ψ + ω2ψ = 0 in Ωj

∀ψ satisfying: ∂njψ = 0 in ∂Ωj ∩ ∂Ω

Grouping local scattering maps in a block-diagonal
matrix, (1) can be expressed in condensed vec-
tor form (with appropriate source term rhs)

p+ = S(p−) + rhs,

with S := diag(S1, . . . ,SJ).
(4)

By a simple linear combination involving the
impedance coe�cient iω, the transmission con-
ditions (2) can also be re-arranged in terms of
Robin traces

− ∂nju|Γj + iωu|Γj

= ∂nk
u|Γk

+ iωu|Γk
on Γj ∩ Γk.

(5)
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for all j, k = 1 . . . J, j 6= k and, again, (5) can be
written in vector form as

p− = Πloc(p+) (6)

where the so-called local exchange operator Πloc

simply consists in swapping traces, on each in-
terface, from one side to the other. The wave
propagation problem is then reformulated by
combining (4) and (6)

(Id− SΠloc)p+ = rhs. (7)

This equation, posed skeleton of the subdomain
partition, is the standard form of OSM and De-
sprés' algorithm consists in applying a linear
solver to it.

2 Choice of the impedance operator

As a key feature, the skeleton formulation (7)
enjoys a positivity property. When considering
L2-based scalar product for the traces (3), both
S and Πloc are contractive, so that the operator
in (7) takes the form "Id + contraction", and

<e{((Id− SΠloc)p, p)L2(Γ)} ≥ 0

L2(Γ) := L2(Γ1)× · · · × L2(ΓJ)
(8)

This property can be exploited to prove conver-
gence of linear solvers. However, in practice,
the convergence can be poor because of a lack
of coercivity.

This situation is improved by considering vari-
ants of (7) stemming from a di�erent choice of
Robin traces

p± = (±∂nju|Γj + iTj(u|Γj ))j=1...J, (9)

with Sj 's modi�ed accordingly. The impedance
coe�cients Tj can be chosen as scalar multi-
plicative factors, or more generally as (poten-
tially non-local) operators.

The impedance operators Tj appear as pa-
rameters of the method that can be tuned so
as to improve the convergence of linear solvers,
and many contributions of the litterature have
investigated the best possible choices of Tj 's in
this respect [1, 10, 17]. State of the art in this
direction points towards a choice of Tj 's as ap-
proximations of exterior Dirichlet-to-Neumann
maps based on Pade expansions.

For non-scalar operator valued impedances, a

generic convergence theory was proposed in [6,
10,11] for impedances Tj whose real part is pos-
itive de�nite on H1/2(Γj). However this theory
could not cover the presence of cross points in
the subdomain partition, see �g.2.

Ω1 Ω2

Ω3

Ω1 Ω2

Figure 2: cross point con�gurations. Adjacency
of at least 3 subdomains, or adjacency of at least
2 subdomains at the boundary.

3 The cross point issue

In both the analysis and the actual implemen-
tation of OSM algorithms, cross points (�g.2)
have long remained a persistent issue that can
spoil convergence [15]. While these points are
isolated in 2D, they form a wire-basket network
of curves in 3D.

As regards continuous analysis, this issue stems
from the local exchange operator Πloc losing its
contractivity property in the trace spaces H±1/2(Γj)
naturally arising with operator valued impedances
[10].

Concerning algorithmic treaments that should
be adopted at cross points - at least when de-
grees of freedom are located there - although re-
cent contributions have proposed e�ective pro-
cedures [13,14,18�20], these are restricted to ei-
ther checkerboard partitions or 2D geometries.

Such di�culties in dealing with cross points
are problematic because virtually any subdo-
main partition of practical relevance involves such
feature and the geometry of the (wire basket of)
cross points can be very complicated.

4 New form of transmission conditions

In this talk, based on [3, 4, 7, 9], we shall de-
scribe a novel approach to OSM that can cope
with general non-overlapping subdomain parti-
tions with garanteed convergence, no matter the
presence of cross points. This approach resorts
on several new ideas.

The �rst ingredient is a new manner to impose
transmission conditions. While all pre-existing
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contributions on OSM imposed transmission con-
ditions by means of the local exchange operator
Πloc like in (5)-(6), we formulate these condi-
tions as

p− = Π(p+) where

p± = (±∂nju|Γj + iTj(u|Γj ))j=1...J
(10)

with an exchange operator Π that does not nec-
essarily reduce to swapping unknowns from each
side of each interface:

Π 6= Πloc a priori.

The construction of Π depends on the choice of
the impedance operators Tj 's and follows the
principles of the Multi-Trace Formalism (MTF)
previously developped [5,8] to deal with bound-
ary integral formulations in multi-domain ge-
ometries with possible presence of cross points.

A new variant of OSM then stems from (10)
and leads to a skeleton formulation completely
analogous to (7)

(Id− SΠ)p+ = rhs. (11)

In fact, if there is no cross point and if impedance
operators Tj 's coincide through each interface,
then Π = Πloc, and (11) reduces to (7).

In general, the operator Π is non-local, and may
be de�ned implicitely through the solution to a
symetric positive de�nite system which makes
e�ective numerical solution to (11) more involved.

5 New convergence bounds

Another novelty of our approach concerns the
convergence analysis of OSM. Building on [10]
combined with our treatment of cross-points, a
new idea here is to conduct the analysis in terms
of the norms induced by the impedance opera-
tors Tj , assuming that pj , qj 7→ 〈T−1

j (pj), qj〉Γj

are scalar products on H−1/2(Γj), and consider-
ing

‖p‖2T−1 :=

〈T−1
1 (p1), p1〉+ · · ·+ 〈T−1

J (pJ), pJ〉
(12)

on tuples of Neumann traces p = (p1, . . . , pJ). In
this norm, contractivity properties of scattering
and exchange operators are restored

‖Π(p)‖T−1 = ‖p‖T−1

‖S(p)‖T−1 ≤ ‖p‖T−1 .

The analysis can be conducted both at the con-
tinuous and the discrete level. In the discrete
case, if the impedances Tj are scalar products,
the skeleton formulation is proved to be system-
atically coercive (α > 0) for the corresponding
norm

<e{(p, (Id−ΠS)p)T−1} ≥ α‖p‖2T−1

We shall discuss in detail this coercivity esti-
mate. It leads directly to convergence bounds
for classical linear solvers applied to (11), and it
suggests certain choices of impedance operators
which are con�rmed by numerical results.
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