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Abstract

Optimized Schwarz Methods (OSM) stand among
the most popular substructuring domain decom-
position strategies for the simulation of wave
propagation in harmonic regime. Considering
arbitrary non-overlapping subdomain partitions
with such methods, the presence of so-called
cross points, where three or more subdomains
could be adjacent, have raised serious practical
and theoretical issues.

We will describe a novel approach to OSM
that provides a systematic and robust treatment
of cross points as well as a complete analytical
framework. A salient new feature is the use of
a non-local exchange operator to enforce trans-
mission conditions and maintain subdomain cou-
pling. The associated theory covers several pre-
existing variants of OSM, including Després’ orig-
inal algorithm, and yields new convergence bounds.

Keywords: domain decomposition, substructur-
ing, Optimized Schwarz, cross points

1 Optimized Schwarz Method

When considering a wave propagation problem
Au+w?u = —f in Q c R? with d,u = 0 on 01,
substructuring strategies start from a partition
Q = Uj’:lﬁj into non-overlapping subdomains
(Q; Ny, =0 for j # k) to derive a collection of
local subproblems, for j =1...J,

Au+w?u=—f in Q;,

_ (1)
Onpu =0 on 99Q; NN

supplemented with transmission conditions through
interfaces: denoting I'; := 9€); and n; the nor-
mal to I'; pointing outside 2, for all j, k with

j # k we impose

8n.ju‘rj = —On,ulr,
on Pj NIy

(2)

U‘Fj = U|Fk

The main idea of the Optimized Schwarz Method

Figure 1: A subdomain partition with cross-

points as considered in this work

a la Després [12] is to reformulate (1)-(2) in
terms of tuples of ingoing /outgoing Robin traces

p+ = (£0n,ulr, + iwulr;)j=1..3- (3)

As regards local wave equations, this is achieved
by means of scattering maps S; defined by their
action on solutions to the homogeneous wave
equation

Sj(=0n;¥Ir; +iwdlr,) = On,Wlr; + iwtlr

Vi) satisfying: Ay +w?p =0 in €
On; ¥ =0 in 98, NOQ

Grouping local scattering maps in a block-diagonal
matrix, (1) can be expressed in condensed vec-
tor form (with appropriate source term rhs)

ps = S(p-) + rhs,

: o (4)
with S := diag(Sy,...

7SJ)'

By a simple linear combination involving the
impedance coefficient iw, the transmission con-
ditions (2) can also be re-arranged in terms of
Robin traces

— On,ulr; + iwulr; )

= Op,ulr, +iwulp, on I'; NI,
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forall j,k=1...J,7 # k and, again, (5) can be

written in vector form as

p— = Hioe(p+) (6)

where the so-called local exchange operator I,
simply consists in swapping traces, on each in-
terface, from one side to the other. The wave
propagation problem is then reformulated by
combining (4) and (6)

(Id — SIljoc)p+ = rhs. (7)

This equation, posed skeleton of the subdomain
partition, is the standard form of OSM and De-
sprés’ algorithm consists in applying a linear
solver to it.

2 Choice of the impedance operator

As a key feature, the skeleton formulation (7)
enjoys a positivity property. When considering
L2-based scalar product for the traces (3), both
S and IIj,. are contractive, so that the operator
in (7) takes the form "Id 4 contraction", and

fe{((Id - SHloc)p7p)IL2(F)} >0
L2(T) = L2(I}) x - x L2(T))

This property can be exploited to prove conver-
gence of linear solvers. However, in practice,
the convergence can be poor because of a lack
of coercivity.

This situation is improved by considering vari-
ants of (7) stemming from a different choice of
Robin traces

p+ = (£0n,;ulr, +1T;(ulr;))j=1.0, (9)

with S;’s modified accordingly. The impedance
coefficients T; can be chosen as scalar multi-
plicative factors, or more generally as (poten-
tially non-local) operators.

The impedance operators T, appear as pa-
rameters of the method that can be tuned so
as to improve the convergence of linear solvers,
and many contributions of the litterature have
investigated the best possible choices of T}’s in
this respect [1,10,17]. State of the art in this
direction points towards a choice of T;’s as ap-
proximations of exterior Dirichlet-to-Neumann
maps based on Pade expansions.

For non-scalar operator valued impedances, a

generic convergence theory was proposed in [6,
10,11] for impedances T; whose real part is pos-
itive definite on H'/2(T';). However this theory
could not cover the presence of cross points in
the subdomain partition, see fig.2.

Ql QQ Ql QQ

2 o

Figure 2: cross point configurations. Adjacency
of at least 3 subdomains, or adjacency of at least
2 subdomains at the boundary.

3 The cross point issue

In both the analysis and the actual implemen-
tation of OSM algorithms, cross points (fig.2)
have long remained a persistent issue that can
spoil convergence [15]. While these points are
isolated in 2D, they form a wire-basket network
of curves in 3D.

As regards continuous analysis, this issue stems
from the local exchange operator Ilj,. losing its
contractivity property in the trace spaces H*/2(T;)
naturally arising with operator valued impedances
[10].

Concerning algorithmic treaments that should
be adopted at cross points - at least when de-
grees of freedom are located there - although re-
cent contributions have proposed effective pro-
cedures [13,14,18-20], these are restricted to ei-
ther checkerboard partitions or 2D geometries.

Such difficulties in dealing with cross points
are problematic because virtually any subdo-
main partition of practical relevance involves such
feature and the geometry of the (wire basket of)
cross points can be very complicated.

4 New form of transmission conditions

In this talk, based on [3,4,7,9|, we shall de-
scribe a novel approach to OSM that can cope
with general non-overlapping subdomain parti-
tions with garanteed convergence, no matter the
presence of cross points. This approach resorts
on several new ideas.

The first ingredient is a new manner to impose
transmission conditions. While all pre-existing
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contributions on OSM imposed transmission con-
ditions by means of the local exchange operator
Mo like in (5)-(6), we formulate these condi-
tions as

p— =1I(p+) where

10
p+ = (£0n,ulr, +1T;(ulr;))j=1..0 (10)

with an exchange operator II that does not nec-
essarily reduce to swapping unknowns from each
side of each interface:

I # o a priori.

The construction of II depends on the choice of
the impedance operators T,;’s and follows the
principles of the Multi-Trace Formalism (MTF)
previously developped [5,8] to deal with bound-
ary integral formulations in multi-domain ge-
ometries with possible presence of cross points.

A new variant of OSM then stems from (10)
and leads to a skeleton formulation completely
analogous to (7)

(Id — SII)p4 = rhs. (11)

In fact, if there is no cross point and if impedance
operators T;’s coincide through each interface,
then IT = I, and (11) reduces to (7).

In general, the operator II is non-local, and may
be defined implicitely through the solution to a
symetric positive definite system which makes

effective numerical solution to (11) more involved.

5 New convergence bounds

Another novelty of our approach concerns the
convergence analysis of OSM. Building on [10]
combined with our treatment of cross-points, a
new idea here is to conduct the analysis in terms
of the norms induced by the impedance opera-
tors T, assuming that p;,q; — <T;1(pj),§j>pj
are scalar products on Hfl/Q(Fj), and consider-
ing

2
HpH_Tfl' ] L 12)
(T7"(p1),P1) + -+ + (T3 (ps), Py)
on tuples of Neumann traces p = (p1,...,py). In

this norm, contractivity properties of scattering
and exchange operators are restored

ITI(p)[lr-1 = [Ipllr—
IS(®)llr-1 < llpllz-1.

The analysis can be conducted both at the con-
tinuous and the discrete level. In the discrete
case, if the impedances T are scalar products,
the skeleton formulation is proved to be system-
atically coercive (o > 0) for the corresponding
norm

Re{(p, (1d = TIS)p)p 1} = allpl3-

We shall discuss in detail this coercivity esti-
mate. It leads directly to convergence bounds
for classical linear solvers applied to (11), and it
suggests certain choices of impedance operators
which are confirmed by numerical results.
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