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Abstract

We consider iterative methods for the Helmholtz
equation that are based on the related time do-
main wave equation. In each iteration, the solu-
tion to the wave equation with a time-periodic
forcing is computed and filtered in time. For
Dirichlet and Neumann problems the iteration
corresponds to a linear and coercive operator
which, after discretization, is recast as a posi-
tive definite linear system of equations that can
be solved with the conjugate gradient method.
Keywords: Helmholtz, Wave Equation.

1 Introduction

Designing efficient iterative solvers for the Helm-
holtz equation is a challenging problem, in par-
ticular when the frequency is high. The main
difficulties stem from the resolution requirements
and the highly indefinite character of the dis-
cretized problem. For detailed reviews see the
articles by Ernst, Gander, Zhang and Erlangga
[6, 7, 9].

Computational costs and memory require-
ments increase rapidly with the frequency ω.
To maintain a fixed accuracy with a p-th or-
der method at frequency ω the number of grid
points per wavelength must scale as ω1/p due
to the pollution errors. The total number of de-
grees of freedom is then proportional to ωd(1+1/p)

in d dimensions. At high frequencies this leads
to large scale problems that require parallel high-
performance computers. It is thus important
that solver implementations work well on such
platforms. Moreover, solvers should be based
on high order accurate methods, or the extra
penalty ωd/p due to pollution errors can become
prohibitive, in particular in 3D.

As discretizations of Helmholtz give rise to
indefinite linear systems, the conjugate gradient
(CG) method cannot be used and the method
of necessity becomes the generalized minimal
residual method (GMRES). Without precondi-
tioning, the convergence is, however, very slow
and the iteration typically stagnates. Efficient
preconditioners tailored to the Helmholtz equa-

tion must be used to accelerate the convergence.
Many such preconditioners have been developed
in the past two decades, for instance the an-
alytic incomplete LU [8], shifted laplacian [5],
and sweeping [4] preconditioners, to mention a
few. Specialized, and efficient, preconditioners
give faster convergence, but they can be harder
to reconcile with the need for high order imple-
mentations that can use high performance com-
puters to good advantage.

2 Time-domain methods

In this talk I will discuss time-domain meth-
ods, which is a less explored type of iterative
method for the Helmholtz equation that exploits
its connection to the time-dependent wave equa-
tion. Specifically, I will consider the WaveHoltz
method that was developed in [2].

There are many advantages to solving the
time dependent wave equation rather than the
Helmholtz equation. Algorithms for solving the
wave equation are memory lean. They are easy
to parallelize and scale well. There are also
many provably stable and high order accurate
methods available. Compared to discretizations
of Helmholtz, time domain methods can there-
fore more easily deal with large scale high-frequency
problems.

In the simplest time-domain method one runs
the wave equation for a long time to get a Helm-
holtz solution. The theoretical underpinning of
this approach is the limiting amplitude princi-
ple [12] which says that every solution to the
wave equation with an oscillatory forcing, in
the exterior of a domain with reflecting bound-
ary conditions tends to the Helmholtz solution.
However, this method generally does not work
for interior problems and becomes very slow for
problems with trapping waves.

The Controllability Method (CM) is an al-
ternative approach. It was originally proposed
by Bristeau et al. [3] and was further developed
by Heikkola et al. [11] as well as Grote and Tang
[10]. In CM the solution to the Helmholtz equa-
tion is found by solving a convex constrained
least-squares minimization problem where the
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deviation from time-periodicity is minimized in
the classic wave equation energy. The basic it-
eration step in CM includes the solution of a
forward and a backward wave equation over one
time-period. In some versions one must also
solve a symmetric coercive elliptic (and wave
number independent) problem.

3 The WaveHoltz method

The WaveHoltz method is inspired by CM. It
only requires a single forward wave equation solve
per iteration, and no elliptic solves. For Dirich-
let and Neumann problems it leads to a positive
definite linear system that can be solved with
CG or other Krylov methods. Below we de-
scribe the simplest version of the method for the
Helmholtz equation. It can also be generalized
to other frequency domain wave equations, such
as the elastic wave equation and the Maxwell
equations [1, 13].

Consider the Helmholtz equation in a bounded
open smooth domain Ω,

∇ · (c2∇u) + ω2u = f, in Ω, (1)

with either Dirichlet or Neumann boundary con-
ditions,

u = 0 or ~n · ∇u = 0, on ∂Ω.

In this formulation no energy leaves the domain
and for (1) to be well-posed, ω must not be a res-
onant frequency, i.e. ω cannot be an eigenvalue
of the operator −∇ · (c(x)2∇). We assume non-
resonance, f ∈ L2(Ω) and c ∈ L∞(Ω) bounded
away from zero, which ensures that there is a
unique weak solution u ∈ H1(Ω) to (1).

This energy conserving case is typically the
most difficult one for iterative Helmholtz solvers.
Moreover, the limiting amplitude principle does
not hold, and one can thus not obtain the Helm-
holtz solution by solving the wave equation over
a long time interval.

To motivate the methods, we first note that
if u solves (1) then the function

w(t, x) := u(x) cos(ωt),

is a T = 2π/ω-periodic (in time) solution to the
forced scalar wave equation

wtt = ∇ · (c2(x)∇w)− f(x) cos(ωt), (2)
w(0, x) = v0(x), wt(0, x) = 0,

where v0 = u. The domain and boundary con-
ditions are the same as in (1). Based on this
observation, our approach is to find w instead
of u. We could thus look for initial data v0 such
that w is a T -periodic solution to (2). However,
there may be several such w, see [10], and we
therefore impose the alternative constraint that
a certain time-average of w should equal the ini-
tial data. More precisely, we introduce the op-
erator Π acting on the initial data v0 ∈ H1(Ω)
as

Πv0 =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
w(t, · )dt, (3)

where w satisfies the wave equation (2) with ini-
tial data w = v0 and wt = 0. The result of
Πv0 can thus be seen as a filtering in time of w
around the ω-frequency. By construction, the
solution u of Helmholtz is a fixed point of Π,

u = Πu,

and the basic method amounts to solving this
equation with the fixed point iteration

vn+1= Πvn, v0 ≡ 0. (4)

Provided this iteration converges and the fixed
point is unique we obtain the Helmholtz solution
as u = limn→∞ vn.

Remark 1 Note that each iteration is inexpen-
sive and that T is reduced by the reciprocal of
ω as ω grows. If we assume that the number of
degrees of freedom in each dimension scales with
ω and that we evolve the wave equation with an
explicit method this means that the number of
timesteps per iteration is independent of ω. Also
note that the iteration is trivial to implement (in
parallel or serial) if there is already a time do-
main wave equation solver in place. The integral
in the filtering (3) is carried out independently
for each degree of freedom and simply amounts
to adding up a weighted sum (e.g. a trapezoidal
sum) of the solution one timestep at a time. Fi-
nally, note that the time-domain iteration allows
all the advanced techniques that have been de-
veloped for wave equations (e.g. local timestep-
ping, non-conforming discontinuous Galerkin fi-
nite elements h- and p-adaptivity etc.) to be
transferred to the Helmholtz equation and other
time harmonic problems.
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4 Analysis

We will now make a simple analysis of the itera-
tion (4). Consider the Helmholtz solution u and
the wave equation solution w with initial data
w = v, wt = 0 and forcing f . Let φj and λ2

j

be the eigenfunctions and corresponding eigen-
values of −∇(c2(x)∇). We can then expand the
functions

u(x) =
∞∑

j=0

ûjφj(x), v(x) =
∞∑

j=0

v̂jφj(x),

w(t, x) =
∞∑

j=0

ŵj(t)φj(x), f(x) =
∞∑

j=0

f̂jφj(x).

The modes of the wave equation solution w can
be written explicitly as functions of time,

ŵj(t) = (v̂j − ûj) cos(λjt) + ûj cos(ωt),

and the filtering step (3) gives

Πv =

∞∑

j=0

v̄jφj(x), v̄j = β(λj)(v̂j − ûj) + ûj ,

where

β(λ) :=
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(λt)dt.

(Note that β(ω) = 1.) Upon defining the linear
operator S by

S
∞∑

j=0

ûjφj(x) :=

∞∑

j=0

β(λj)ûjφj(x),

we can then write the iteration as

vn+1 = Πvn = S(vn − u) + u. (5)

The operator S is self-adjoint and has the same
eigenfunctions φj(x) as −∇ · (c2(x)∇) but with
the (real) eigenvalues β(λj). The convergence
properties of the iteration depend on these eigen-
values and it is therefore of interest to study the
range of the filter transfer function β. Figure 1
shows a plot of β which indicates that the eigen-
values of S are inside the unit interval, with a
few of them being close to 1 (when λj ≈ ω), and
most of them being close to zero (when λj � ω).
In fact, one can show that β(λ) ∈ [−0.5, 1] and

β(ω + εω) ≈ 1− cε2, |ε| � 1. (6)

Figure 1: The filter transfer function β for ω =
10.

We can now derive a convergence result. We
quantify the non-resonance condition by letting

δ = inf
j

|λj − ω|
ω

> 0,

be the relative size of the smallest gap between
λj and the Helmholtz frequency. Then we in-
troduce

ρ = max
j
|β(λj)| = β(ω ± δω) ≈ 1− cδ2,

where the last step follows from (6), assuming
δ � 1. We can rearrange (5) and obtain

vn+1 − u = S(vn − u).

Then,

||vn+1 − u||2L2(Ω) =
∞∑

j=0

β(λj)
2(v̂nj − ûj)2

≤ ρ2
∞∑

j=0

(v̂nj − ûj)2

= ρ2||vn − u||2L2(Ω),

which shows that vn converges to u in L2 with
rate ρ = 1 − O(δ2). Thus, not surprisingly, the
smallest gap, δ, determines the convergence fac-
tor. It is straightforward to also get convergence
in H1. In the end we obtain the following theo-
rem, [2].

Theorem 2 The iteration (4) converges in H1(Ω)
for the Dirichlet and Neumann problems away
from resonances to a unique fixed point which is
the solution of the Helmholtz equation (1). The
convergence rate is 1−O(δ2).
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The iteration operator is an affine operator
of the form

Πv = Sv + b, b = u− Su.

Setting A = I −S we can reformulate the fixed
point problem v = Πv as a linear equation

Av = b. (7)

Further analysis of S shows that it is a bounded,
linear, self-adjoint, compact operator fromH1(Ω)
to H1(Ω), whose eigenvalues lie in the interval
[−0.5, ρ]. Therefore, A is a bounded, linear, self-
adjoint operator from H1(Ω) to H1(Ω), which
is positive and coercive, with eigenvalues in the
interval (1 − ρ, 3/2]. Its condition number is of
size O(1/(1− ρ)) = O(1/δ2).

Krylov acceleration. We note that b = Π0
in (7) and can therefore easily be pre-computed.
Furthermore, we can then evaluate the action of
A as

Av = v −Πv + b.

Thus, we can simply carry out the evaluation
of Av by evolving the wave equation for one
period in time with v as the initial data and
then subtract the filtered solution from the sum
of the initial data and the right hand side b.
This makes it possible to replace the simple fixed
point iteration (4) with accelerated Krylov meth-
ods. Since A is positive and self-adjoint one can
use the conjugate gradient (CG) method.

Although the formulation (7) is mathemati-
cally equivalent to the original Helmholtz equa-
tion (1) for the interior Dirichlet and Neumann
problems away from resonances, there are two
striking differences:

• The linear equation (7) is positive definite,
not indefinite.

• Since S is compact, the condition number
ofA after discretization is essentially inde-
pendent of the grid size ∆x. This means
that, similar to many boundary integral
methods, the number of iterations needed
for convergence is also virtually indepen-
dent of ∆x.

For CG the number of iterations needed to
obtain a fixed accuracy scales as the square root
of the condition number of A, i.e. as 1/δ. To
further understand how δ may depend on the

frequency ω, consider the asymptotic distribu-
tion of large eigenvalues. By the work of Weyl
we know that the eigenvalues of elliptic opera-
tors grow asymptotically as λj ∼ j1/d in d di-
mensions. For large j the eigenvalues thus be-
come more dense in dimensions j ≥ 2. The
average relative gap δ when ω ≈ λj can be esti-
mated as

δ ≈ λj+1 − λj
ω

∼ ω−d.

Thus, for high frequencies, one expects the num-
ber of iterations with an (unconditioned) CG
method to grow as O(ωd). However, in numeri-
cal experiments we observe slightly better com-
plexity.

Remark 3 The iteration count above is for the
interior energy conserving case, which is ill-posed
for resonant ω. Moreover, when d ≥ 2 the prob-
lem will be closer and closer to resonance as ω
grows. To have a physically relevant model at
high frequencies some damping may be required,
for instance by adding a term iωηu to (1). In
this case, we observe that the number of iter-
ations for the corresponding WaveHoltz method
grows as just O(ω) in all dimensions.

Impedance case. For open, non energy con-
serving problems, the Dirichlet or Neumann bound-
ary conditions, are replaced by the impedance
condition

iωu+ ~n · ∇u = 0, on ∂Ω.

This is a common situation in practical applica-
tions. In this case the boundary conditions in
the wave equation (2) should be

wt + ~n · ∇w = 0, on ∂Ω.

Moreover, also the initial data for the time-derivative
ut(0, x) = v1(x) must be included in the itera-
tion:
[
v0

v1

](n+1)

= Π

[
v0

v1

](n)

,

[
v0

v1

](0)

≡ 0,

where vn+1
1 is the time-filter of wt in the same

way as vn+1
0 is the time-filter of w in (3). The re-

sulting operator A is no longer self-adjoint, and
GMRES must be used instead of CG to solve
(7). For these open problems we observe con-
vergence but do not yet have a complete theory

Suggested members of the Scientific Committee:



WAVES 2022, Palaiseau, France 5

explaining it. Since the operator in the wave
equation in this case does not have a point spec-
trum, nor an eigen basis, the simple analysis
used above fails. However, numerical experi-
ments show that the number of iterations for
fixed accuracy generally grows as O(ω) indepen-
dent of ∆x and dimension d.

We note finally that the convergence rates
reported above are all for the unconditioned case.
As for frequency domain methods, precondition-
ers could potentially improve these rates signif-
icantly.
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