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Abstract

Seismic full waveform inversion is formulated
as non-convex optimization problem that con-
verges to useful solutions only when the start-
ing velocity is close to the true velocity and/or
the data contain unrealistic low frequencies. A
time-extension of the velocity model leads to
waveform inversion algorithms that are more ro-
bust than the conventional full waveform in-
version algorithms. Waveform inversion with
time extension can be formulated in either the
time domain or the temporal-frequency domain.
The time-domain algorithm has been success-
fully tested with several datasets. A simple nu-
merical example illustrates the characteristics
of the proposed method and provides intuition
on the convergence properties of the long wave-
lengths of the velocity model.
Keywords: seismic, waveform inversion, non-convex
optimization

1 Introduction

Since its introduction in the early 80s [12, 20]
full waveform inversion (FWI) has been appeal-
ing for the simplicity of its formulation. FWI
is defined as the search of the velocity model
that minimizes the differences between the data
recorded in the field and data modeled by using
a waveform modeling operator. FWI practical
applications have been hampered by three main
challenges: 1) computational cost, 2) data qual-
ity (e.g. poor spatial sampling), and 3) unre-
liable convergence to a useful model when the
starting model is inaccurate and the data do
not contain unrealistic low frequencies. Modern
computational and data-acquisition technology
have mostly solved the first two of these chal-
lenges. Progress in ray-based velocity estima-
tion methods and progress in low-frequency and
long-offsets data acquisition have reduced the
practical impact of the third and enabled the
successful application of FWI to many datasets.

However, there are many datasets acquired over
complex geology that still defy modern FWI al-
gorithms because of lack of convergence.

Several examples of algorithmic solutions of
the convergence problem have been proposed;
for some useful algorithmic solutions see [4, 9,
14,21]. This paper presents two methods, which
are closely related to each other, to overcome
the convergence challenges of conventional FWI
by using the concept of velocity-model exten-
sion. The idea of using velocity-model exten-
sions to estimate the long wavelengths of the ve-
locity model is rooted in the concept of prestack
images. The goal of conventional velocity esti-
mation is to focus prestack images obtained by
seismic migration [6]. In a waveform inversion
framework, prestack images are estimates of the
short-wavelength component of an extended ve-
locity model. Adding to the data-fitting goal of
FWI the additional goal of focusing prestack im-
ages leads to waveform inversion methods that
can robustly update the long wavelength of the
velocity model [5, 15–18].

Symes [19] generalized the velocity-model ex-
tension idea beyond extended images to a ve-
locity space-extension that includes all scales of
the model. Biondi and Almomin [7] showed that
extending the model in time yields a practical
algorithm for robustly estimating all the wave-
lengths in the model. However, their optimiza-
tion algorithm requires the tuning of several hy-
perparameters. Barnier et al. [6] introduced a
more robust and general algorithm based on vari-
able projection [11] that can be applied to both
space and time extension of the model.

In this paper we focus on the time exten-
sion of the model and present two waveform-
inversion methods. The first one is based on
the time-domain solution of the acoustic wave
equation and the second one on the temporal-
frequency domain solution. The time-domain
method is the time-extension instance of the
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more general FWI with model extension (FWIME)
method presented in [1–3].

2 Full waveform inversion with time ex-
tension (FWITE)

Conventional full-waveform inversion (FWI) is
performed by solving the following optimization
problem

min
s2

J
(
s2
)
,

where:

J
(
s2
)
=

1

2

∥∥L
(
s2, f

)
− d

∥∥2
2
, (1)

and s2 is a vector of gridded slowness-squared
values, L is a wave-equation operator whose so-
lutions are nonlinear with respect to slowness
perturbations but linear with respect to the source
function, f, which is function of time, t. The
data vector d is a subset of the pressure-field
vector p that is defined on the same spatial grid
as s and on a discretized time. The data are ex-
tracted from the pressure field at the receivers’
locations through a linear sampling operator K;
such as d = Kp.

For the sake of simplicity, we assume that
L is the acoustic and isotropic wave-equation
operator. A generalization of the concepts pre-
sented in this paper to problems that require
more complex wave-equation operators such as
elastic and/or anisotropic is possible in princi-
ple, although it is not straightforward.

To define full waveform inversion with time
extension (FWITE) we introduce a new "extended-
model" wave operator L̃ defined by the extended
acoustic wave equation:

∇2p (t, x)− s̃2 (τ, x)
τ,t∗ ∂2

t p (t, x) = f (t) . (2)

In equation 2 the symbol
τ,t∗ signifies convolution

in time between the pressure field and the time-
extended slowness-squared model, s̃2. When
s̃ id different from zero only at τ = 0 equa-
tion 2 reduces to the conventional wave equa-
tion that describes the physical phenomenon of
wave propagation in an acoustic medium.

We define FWITE as the minimization of
the following objective function,

J̃
(
s̃2
)
=

1

2

∥∥∥L̃
(
s̃2
)
− d

∥∥∥
2

2
+ ϵ

∥∥τ s̃2
∥∥2
2
. (3)

We introduce the second term in 3 to constrain
the solution to be "physical"; that is, to satisfy

the conventional wave-equation without exten-
sion, and ϵ is a trade-off parameter between the
two terms in the objective function.

The formulation of FWITE as the minimiza-
tion of the objective function 3 presents sev-
eral theoretical and practical problems. The
most fundamental challenge concerns the stabil-
ity of the solution of the extended-model wave
equation in 2. In the next section we present
practical solution of these challenges based on
a first-order Born linearization of 2 that leads
to a robust, though computationally expensive,
variable-projection inversion algorithm.

Frequency-domain time extension
To avoid the hurdles of the time-domain formu-
lation of FWITE and to reduce the computa-
tional cost of the method, we are developing
a frequency-domain based on the one-way ap-
proximation of the Helmholtz equation. Claer-
bout [10] introduced one-way wave propagation
in the early 1970s. Since then, the seismic ex-
ploration community has developed many effi-
cient numerical schemes for one-way wave prop-
agation in the frequency domain. The use of
the one-way wave equation for waveform inver-
sion is more recent [4]. We believe that our
frequency-domain method could be generalized
to solutions of the the full Helmholtz equation,
which is more accurate, but also substantially
more expensive to solve, in particular in three
dimensions.

FWITE can be defined in the temporal fre-
quency, ω, domain by extending a complex val-
ued s̃2ω along ω. In that case the convolution
in equation 2 becomes a simple multiplication
and the weight by τ in the second term of the
objective function 3 becomes a derivative with
respect to frequency.

FWITE in the frequency domain minimizes
the following objective function,

J̃
(
s̃2ω

)
=

1

2

∥∥∥L̃ω

(
s̃2ω

)
− dω

∥∥∥
2

2
+ ϵ

∥∥i∂ω s̃2ω
∥∥2
2
, (4)

where L̃ω is a frequency-domain wave operator
based on the one-way wave equation and dω is
the recorded data in the frequency domain. The
stability of the one-way modeling operator can
be ensured by imposing the constraint ℑ

(
s̃2ω

)
≤

0.
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3 FWITE algorithms

In this section we discuss two different optimiza-
tion algorithms for solving the time-domain and
the temporal-frequency domain formulations of
FWITE.

Variable-projection optimization for time-
domain FWITE
As mentioned in the previous section, an impor-
tant challenge of minimizing the objective func-
tion 3 is computing numerical solutions to equa-
tion 2. Because of the large dimension of the
computational grid needed in reflection seismol-
ogy, practical algorithms for solving the wave
equation in time domain are based on explicit
finite differences; implicit finite-differences algo-
rithms are too computationally intensive in 3D
for being practical. Explicit finite-differences so-
lutions of equation 2 would be unstable.

The solution to this problem is to approx-
imate the wave operator L̃ with its first-order
Born linearization, L̃, around a background phys-
ical (i.e. not extended) slowness model s2b ; that
is, using the following approximation

L̃
(
s2b +∆s̃2

)
≈ L

(
s2b
)
+ L̃

(
s2b
)
∆s̃2. (5)

The objective function 3 then becomes

J̃l
(
s2b ,∆s̃2

)
=

1

2
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(
s2b
)
+ L̃

(
s2b
)
∆s̃2 − d

∥∥∥
2

2

+ ϵ
∥∥(|τ |+ α)∆s̃2

∥∥2
2
. (6)

This new objective function is then minimized
by applying a variable projection scheme [11].
Notice the addition of the small positive scalar
α in the objective function 6. It ensures that
the Hessian of the variable projection step is a
positive-definite matrix.

At each iteration of the optimization, we
first fix s2b and iteratively solve the quadratic
problem in ∆s̃2 by applying a conjugate gra-
dient method to estimate an optimal ∆s̃2o. A
conjugate-gradient solution requires applications
of L̃ and of its adjoint L̃∗ to vectors in the slow-
ness space and data space, respectively. These
matrix-vector products are computed using al-
gorithms based on adjoint-state methods that
are similar to the ones used for conventional
FWI. Given the solution ∆s̃2o of the variable-
projection step, we then perform a single step
of L-BFGS to update the background model s2b .
We stop the iterative process when the differ-
ences between the data modeled using the new

background model and the recorded data are
sufficiently small.

The analysis of the structure of the gradient
for the outer iterations illuminates the nature of
the FWITE process and provides intuition on
the way that the methods overcome the conver-
gence challenges of conventional FWI [1–3]. The
gradient is the sum of two different components
and can be written as:

∇J̃l = (T∗ + L∗)
(
L
(
s2b
)
+ L̃

(
s2b
)
∆s̃2o − d

)
,

(7)
where L∗ is the adjoint of the first-order Born
linearization of L, and T∗ is the adjoin of a data-
domain tomographic operator that connects the
long-wavelength of the slowness model to data
perturbations [7]. When s2b is far from the “true”
model and ∆s̃2o is far from being focused around
τ = 0, the first term drives the long-wavelengths
of the model towards the correct solution. In
contrast, when s2b is close to the “true” model
and ∆s̃2o is well focused around τ = 0, the con-
tributions of the tomographic term to the gra-
dient are small, and the iterations approximate
standard FWI iterations.

Constrained optimization for frequency do-
main FWITE
The frequency-domain objective function 4 can
be directly minimized using a gradient-based op-
timization scheme for complex variables, such as
an L-BFGS optimization scheme. To avoid in-
stability in the computation of the forward oper-
ator L̃ω, we ensure that the condition ℑ (̃sω) ≤ 0
is always fulfilled by projecting the gradients
onto the feasible subspace.

4 Numerical example

The time-domain algorithm outlined in the pre-
vious section has successfully been tested on sev-
eral challenging synthetic examples as well as
on a 3D field dataset [3]. In this section we
show one of the examples from Barnier [3] that
is an archetypal example in reflection seismol-
ogy [13]. It has the advantage of simplicity and
thus it lends itself to illustrating some of the
salient characteristic of the method.

Figure 1 shows the 2D velocity model as-
sumed for numerical modeling a reflection dataset
solving a constant-density acoustic wave equa-
tion. The velocity in the circle in the middle is
substantially lower (2.25 km/s) than the back-
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ground velocity (2.7 km/s). The source had
the unrealistic frequency range between 20 and
50 Hz to ensure that conventional multi-scale
FWI [9] fails to retrieve the true model. Indeed,
when the starting model is homogeneous and set
to the background velocity of 2.7 km/s, conven-
tional FWI employing the well-known frequency
bootstrapping procedure that starts with the
low frequency to improve convergence [9]. pro-
duces the model shown in Figure 2. In con-
trast, a multi-scale FWITE algorithm [2] yields
the accurate model shown in Figure 3, after two
scale refining steps. The graphs shown in Fig-
ures 4 and 5 compare the result of FWI (ma-
genta lines) and FWITE (blue lines) at the con-
stant fixed horizontal location of 2 km and at
the fixed depth of 0.6 km, respectively. The
FWITE result is close to the true model (black
lines) notwithstanding the starting model was
far from accurate and the missing low frequen-
cies in the data.

Examining the tomographic component of
the first outer-loop iteration gradient (equation 7)
provides some intuition on the reason why FWITE
converges to an excellent model even when the
starting model is grossly inaccurate and the data
miss the low frequencies. Figure 6 shows the to-
mographic component (first term in equation 7)
of the search direction (opposite sign of the gra-
dient). The tomographic component is already
moving the long-wavelengths of the model in the
right direction of decreasing the velocity in the
low-velocity anomaly in the middle. The gradi-
ent tomographic component does not cycle skip
as it would the conventional FWI gradient be-
cause the data residuals that are back-projected
by equation 7 have been corrected by the addi-
tion of the term L̃∆s̃2o.

The nature of the long-wavelength contribu-
tion of the tomographic component is further il-
lustrated by the complex modulus of the Fourier
transform of the search direction shown in Fig-
ure 7. Comparing this wavenumber-domain spec-
trum with the similar spectrum of the difference
between true and starting models shown in Fig-
ure 8, we can see how the tomographic com-
ponent starts to fill in the low wavenumbers,
in particular around the horizontal direction, of
the velocity anomaly missing from the start-
ing model. These results are consistent with
the generalization of the classical wavenumber-
domain analysis of first-order scattering [22] by

Biondi et al. [8] and summarized by the dia-
gram shown in Figure 9. The area shaded in
orange in the Figure corresponds to the model
wavenumber components that are illuminated
by second order scattering when the data are
recorded with source and receivers located at
the surface.

5 Conclusions

Full waveform inversion with model time exten-
sion can be a powerful algorithmic solution to
the convergence problems of conventional full
waveform inversion. The time-domain version
of the method is solved with a variable projec-
tion algorithm after a modification of the objec-
tive function based on a Born linearization of
the modeling operator with respect to the ex-
tended model. The frequency-domain formula-
tion holds the promise of enabling a direct so-
lution of the optimization problem formulated
with non-linear extended modeling operator.
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Figure 3: Velocity model produced by the time-
domain FWITE algorithm presented in this pa-
per.

Figure 4: Vertical slice taken at the lateral lo-
cation of 2 km through the initial model (red),
FWI model (magenta), FWITE model (blue),
and true model(black).

Figure 5: Horizontal slice taken at depth of
0.6 km through the initial model (red), FWI
model (magenta), FWITE model (blue), and
true model(black).

Figure 6: Tomographic component of the first
search direction of the FWITE optimization
process.

Figure 7: Complex modulus of the Fourier
transform of the search direction shown in Fig-
ure 6

.

Figure 8: Complex modulus of the Fourier
transform of the difference between the true and
the starting models.
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Figure 9: Diagram showing the areas (orange)
in the wavenumber plane that are illuminated
by second order scattering (tomographic opera-
tor) when the data are recorded with source and
receivers located at the surface.


