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Abstract

We analyze the hp-FEM applied to Helmholtz
problems with piecewise analytic coefficients and
a variety of boundary conditions. We show that
quasi-optimality is reached under the following
conditions on the mesh size h and the approxi-
mation order p; a) kh/p is sufficiently small and
b) p & log k.
Keywords: Helmholtz equation, heterogeneous
media, high frequency problems

1 Introduction

Time-harmonic wave propagation problems play
an important role in a wide range of physical
and industrial applications. A prominent ex-
ample is the Helmholtz equation, which arises,
e.g., in acoustics. The heterogeneous Helmholtz
equation

−∇ · (A(x)∇u) + k2n2(x)u = f (1)

with coefficients A, n describes time-harmonic
acoustic waves in inhomogeneous media com-
prising materials with different acoustic prop-
erties (e.g., density, speed of sound). An impor-
tant parameter in this model is the wavenumber
k > 0, which is proportional to the underlying
frequency.

A key issue with numerical methods for such
equations are dispersion errors, which manifest
themselves in the fact that, as the wavenumber
k increases, the discrepancy between the error
of the numerical method and the best approxi-
mation widens. In particular for homogeneous
media, i.e., the Helmholtz equation with con-
stant coefficients, this “pollution effect”, [12], has
been analyzed on translation invariant meshes,
[1] and then on unstructured meshes [18,19] where
it has been shown that high order Galerkin meth-
ods are better suited to deal with dispersion
errors than low-order methods. In fact, while
fixed order methods cannot be “pollution-free”,
[2], the hp-version of the Galerkin method (hp-
FEM) achieves quasi-optimality if the following

scale-resolution condition

kh

p
≤ c1 and p ≥ c2 log k (2)

holds, [10, 18, 19]. Here, c2 > 0 is an arbitrary
constant and c1 is required to be sufficiently
small. In the present work we extend this re-
sult to the case of piecewise analytic coefficients
A, n. For globally smooth coefficients A, n, such
a result has recently been shown in [11, 14, 15]
using different techniques based on semiclassical
analysis.

The insight underlying [18, 19] and its gen-
eralization here to the heterogeneous Helmholtz
equation is a splitting of solutions of Helmholtz
problems into a part with finite regularity and
good k-dependence and an analytic part with
explicit control in terms of k (“regularity by de-
composition”). This idea has been successfully
applied in a variety of related contexts such as
problems with corner singularities [5,10], discon-
tinuous Galerkin [17], continuous interior penalty
[9,24], FEM-BEM coupling, [21], and multiscale
[6] methods. The technique of regularity by de-
composition proves useful also in the context of
a posteriori error estimation [4, 8] and in other
wave propagation problems [7, 16,20].

2 Main result

2.1 Problem formulation and notation

We consider a bounded Lipschitz domain Ω ⊂
Rd, d ∈ {2, 3}. We assume Γ := ∂Ω is analytic.
We assume that Ω is partitioned into a set P
of non-overlapping Lipschitz subdomains such
that ∪P∈PP = Ω. We introduce the internal
interface Γinterf := ∪P∈P∂P \ Γ and require the
pieces ∂P , P ∈ P, to be analytic. We say that a
function G is piecewise analytic if, for some CG,
γG > 0 and all P ∈ P

‖DβG‖L∞(P ) ≤ CGγ|β|G |β|! ∀β ∈ Nd0.

For T ⊂ Rd we introduce the k-dependent ana-
lyticity class A(C, γ, T ) consists of functions G
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with

‖DβG‖L2(T ) ≤ Cγ|β|max{|β|, k}|β| ∀β ∈ Nd0.

We write u ∈ A(C, γ,P) to indicate that the
function u defined on Ω satisfies u ∈ A(C, γ, P )
for all P ∈ P. We consider

−∇ · (A(x)∇u)− k2n2u = f on Ω, (3)
∂nAu− iku = g on Γ, (4)

where A ∈ L∞(Ω,GL(Cd×d)) satisfies for some
cmin > 0

inf
x∈Ω

Re ξHA(x)ξ ≥ cmin|ξ|2 ∀ξ ∈ Cd

and both A, n are piecewise analytic. With
the outer normal vector n on Γ we denote by
∂nAv := n>A(x)∇v the co-normal derivative.
Our analysis is carried out in the norm

‖v‖21,k := ‖∇u‖2L2(Ω) + k2‖v‖2L2(Ω).

We will require the following

Assumption 1 (polynomial well-posedness)
There are θ ≥ 0 and C > 0 such that for k ≥ 1
(3), (4) has a unique solution u ∈ H1(Ω) with

‖u‖1,k ≤ Ckθ
[
‖f‖L2(Ω) + k1/2‖g‖L2(Γ)

]
.

2.2 Quasi-optimality of hp-FEM

We consider meshes Th that satisfy the assump-
tions spelled out explicitly in [18, Sec. 5]. Essen-
tially, these meshes are such that with the ref-
erence simplex K̂ the element maps FK : K̂ →
K ∈ T can be factored FK = RK ◦AK for some
affine mapsAK with ‖A′K‖ ∼ h and ‖(A′K)−1‖ ∼
h−1 and analytic maps RK whose analyticity
properties can be controlled uniformly in K and
h. Additionally, we require the mesh to conform
with the partition P, i.e., each for each K ∈ T
there is P ∈ P such that K ⊂ P .

With the space Pp of polynomials of degree
p, we introduce the approximation space VN :=
Sp,1(T ) := {v ∈ H1(Ω) | v|K ◦ FK ∈ Pp ∀P ∈
P}. The hp-FEM approximation to the solution
u of (3), (4) is: Find uN ∈ Sp,1(Th) such that

b(uN , v) = `(v) ∀v ∈ Sp,1(Th), (5)

b(uN , v) :=

∫

Ω
A(x)∇uN · ∇v − k2n2(x)uNv

+ ik

∫

Γ
uNv,

`(v) :=

∫

Ω
fv +

∫

Γ
gv

Theorem 2 ( [3]) Let u denote the solution of
(3), (4) and uN the Galerkin approximation from
(5). Under the assumptions above, given c2 > 0
there are C, c1 > 0 independent of k, h, p such
that under the scale resolution assumption

kh

p
≤ c1 and p ≥ c2 log k (6)

there holds the quasi-optimality

‖u− uN‖1,k ≤ C inf
v∈Sp,1(Th)

‖u− v‖1,k.

As the sesquilinear form b satisfies a Gårding in-
equality, the proof of this theorem relies on a du-
ality argument (“Schatz argument”) as worked
out in [18, 19]. Specifically, one introduces the
dual solution operator f 7→ S∗(f) by

b(v,S∗(f)) = (v, f)L2(Ω) ∀v ∈ H1(Ω)

and the adjoint approximation property

η := sup
f∈L2

inf
v∈Sp,1(Th)

‖S∗(f)− v‖1,k
‖f‖L2(Ω)

.

Then, one estimates for the Galerkin error eN :=
u− uN using Galerkin orthogonality

‖eN‖2L2 = |b(eN ,S∗(eN ))|
= inf

vN∈VN
|b(eN ,S∗(eN )− vN )|

. ‖eN‖1,kη‖eN‖L2 ,

which leads to ‖eN‖L2 . η‖eN‖1,k. Hence,

‖eN‖21,k . |b(eN , eN )|+ k2‖eN‖2L2

. inf
v∈VN

|b(u− v, eN )|+ (kη‖eN‖1,k)2

. inf
v∈VN

‖u− v‖1,k‖eN‖1,k + (kη‖eN‖1,k)2.

We conclude Thm. 2 if kη is sufficiently small.
This argument reduces the proof of the quasi-

optimality result to the analysis of η. In turn,
the best approximation problem in the defini-
tion of η requires the understanding of the reg-
ularity properties of the solution S∗(f) of the
adjoint problem. This adjoint problem is again
a Helmholtz problem with the same structure
as (3), (4). The following Theorem 3 shows
that S∗(f) can be written as S∗(f) = uH2 +
uA with ‖uH2‖H2(Ω\Γinterf) . ‖f‖L2 and uA ∈
A(C‖f‖L2kθ, γ,P). Control of η is achieved by
approximating uH2 and uA from Sp,1(Th).
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2.3 Regularity by decomposition

Underlying the proof of Theorem 2 is the fol-
lowing decomposition result:

Theorem 3 ( [3]) Under the above assumptions,
for every (f, g) ∈ L2(Ω)×H1/2(Γ) the solution
u of (3), (4) can be written as u = uH2 + uA
with

‖uH2‖H2(Ω\Γinterf) ≤ C
[
‖f‖L2(Ω) + ‖g‖H1/2(Γ)

]
,

uA ∈ A(C [‖f‖L2 + ‖g‖H1/2 ] kθ, γ,P)

for some C, γ > 0 independent of k.

2.4 Ingredients of the proof of Thm. 3

The proof of Thm. 3 relies on an auxiliary prob-
lem: Let w = S+(f, g) be the solution of

−∇ · (A(x)∇w) + k2w = f on Ω, (7)
∂nAw = g on Γ (8)

By Lax-Milgram the operator S+ is well-defined,
and S+(f, g) is piecewise H2 with

‖S+(f, g)‖H2(Ω\Γinterf) . ‖f‖L2 + ‖g‖H1/2 (9)

with implied constant independent of k. A sec-
ond ingredient of the proof of Thm. 3 are filter
operators:

Lemma 4 ( [3]) For each η > 1 there opera-
tors Hη : L2(Ω) → L2(Ω) and HΓ

η : L2(Γ) →
L2(Γ) such that for ε ∈ [0, 1/2) and 0 ≤ s′ ≤ s
and Lη := I−Hη and LΓ

η := I−HΓ
η :

1. ‖Hη‖H̃−ε(Ω)
≤ Cε(ηk)−ε‖f‖L2(Ω).

2. ‖HΓ
η f‖Hs′ (Γ) ≤ Cs,s′(ηk)−(s−s′)‖f‖Hs(Γ).

3. Lηf ∈ A(C‖f‖L2(Ω), η,Ω).

4. LΓ
ηf is the restriction to Γ of a function

F ∈ A(C‖f‖H−1/2(Γ), γ, T ) for some tubu-
lar neighborhood T of Γ.

To prove Thm. 3 one introduces the solution
operator S− by denoting S−(f, g) the solution
of (3), (4) with data f , g. Then, one writes

u = S+(Hηf,H
Γ
η g) + S−(Lηf, L

Γ
ηg) + r

=: uH2,0 + uA,0 + r.

By (9), one has

‖uH2,0‖H2(Ω\Γinterf) .
‖Hηf‖L2 + ‖HΓ

η g‖H1/2 . ‖f‖L2 + ‖g‖H1/2

with implied constants independent of k, η. By
the piecewise analyticity of the data A, n and
the analyticity of Γinterf , Γ, the function uA,0 is
piecewise analytic, and [3] asserts

uA,0 ∈ A(Ckθ(‖f‖L2 + ‖g‖H1/2), γ,P)

for some γ > 0 independent of k. Finally, the
remainder r satisfies

−∇ · (A(x)∇r)− k2n2r = 2k2uH2,0 =: f1 on Ω,

∂nAr− ikr = ikuH2,0 =: g1 on Γ.

Lax-Milgram and the properties of the operators
Hη, HΓ

η then allow one to show with ε = 1/4

‖f1‖L2 + ‖g1‖H1/2 ≤ Cη−ε [‖f‖L2 + ‖g‖H1/2 ]

with a C > 0 independent of η. We may thus
select η > 1 such that Cη1/2 ≤ 1/2 < 1. In
conclusion, we have shown with this choice of η

S−(f, g) = uH2,0 + uA,0 + S−(f1, g1)

with ‖f1‖L2 +‖g1‖H1/2 ≤ 1/2 [‖f‖L2 + ‖g‖H1/2 ].
The decomposition can be repeated for S−(f1, g1),
and a geometric series argument then concludes
the proof.

2.5 Extensions of Thm. 3

The proof of Thm. 3 relies on a few principles
that open the door to more general settings.
Consider, for some boundary operator T−k the
problem

L−k u := −∇ · (A(x)∇u)− k2n2(x)u = f on Ω,

∂nAu− T−k u = g on Γ,

For its analysis, introduce the auxiliary problem

L+
k u := −∇ · (A(x)∇u) + k2u = f on Ω,

∂nAu− T+
k u = g on Γ

for some boundary operator T+
k . One can gener-

alize the procedure of Section 2.4 to this setting,
if the following requirements are satisfied:

1. L−k and L+
k have the same principal part

(which they do);

2. T−k −T+
k is an operator of order zero of the

form T−k −T+
k = kB+a, where the zero-th

order operator B is controlled uniformly in
k and a maps into a class of analytic func-
tions in the sense that au is the restriction
to Γ of a function U ∈ A(Ckβ‖u‖L2(Γ), γ, T )
for some tubular neighborhood T of Γ and
some β.
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3. the solution operator S+ for the auxiliary
problem admits the shift theorem (9) uni-
formly in k;

4. the solution S−(f, g) is in an analyticity
class A(Ckβ, γ,P) for some β ∈ R if f ∈
A(Cf , γf ,P) and g is the restriction to Γ
of a function G ∈ A(Cg, γg, T ) for some
tubular neighborhood T of Γ.

Example 5 (exact b.c. for d = 3) Let DtNk

be the exterior Dirichlet-to-Neumann operator
given by DtNk : g 7→ ∂nv, where v solves the
homogeneous Helmholtz equation with Sommer-
feld radiation condition:

−∆v − k2v = 0 in Rd \ Ω, v|Γ = g,

∂r − ikv = o(|x|−1) for |x| → ∞.

Select T−k := DtNk. The corresponding operator
T+
k is then taken as the Dirichlet-to-Neumann

operator DtN0 for k = 0, where the radiation
condition required in the definition of DtN0 is
such that v = O(1/|x|). A decomposition result
similar to Thm. 3 is then asserted in [3].

Example 6 (2nd order ABC) A possible choice
for T−k is T−k u = α∆Γu− βu with ∆Γ being the
Laplace-Beltrami operator on Γ and α, β ∈ C
parameters with Imα ∼ 1/k, Reα = O(k−2),
β = O(k). One may choose T+

k as the lead-
ing order term of T−k , i.e., T+

k u = α∆Γ. A
decomposition result similar to Thm. 3 can be
achieved, [3]. The analysis is performed in the
norm ‖v‖1,k,1 := ‖v‖1,k + k−1/2|v|H1(Γ).

2.6 Extensions of Thm. 2

Examples 5, 6 assert generalizations of Thm. 3
to other other boundary conditions. The exten-
sion of Thm. 2 to that setting requires modifica-
tions of the proof. Indeed, the proof of Thm. 3
sketched above uses a uniform-in-k continuity
of b. In more general situations such as the
one given by Example 5, one merely has esti-
mates of the form |〈DtNk u, v〉| . |〈DtN0 u, v〉|+
|〈kBu, v〉|+ |〈au, v〉|, where B is an operator of
order zero (bounded uniformly in k) and the
operator a maps into a class of analytic func-
tions as described in Sec. 2.5 for the difference
T−k − T+

k . The proof of quasi-optimality of the
Galerkin method for the problem of Example 5
then requires additional duality arguments to

treat the terms involving the operators kB and
a, [3]. We refer to [16,20] for similar treatments
in the case of BEM or Maxwell’s equation.

3 Numerical Results

3.1 2nd order ABC

We consider (3) equipped with 2nd order ab-
sorbing boundary conditions (ABC) of the form
given in Example 6. The parameters α, β are
selected as α = −i/(2k), β = ik − 1/2− i/(8k).
We refer to [13, Sec. 3.3.3] for a more detailed
discussion of different choices of the parameters
α, β. Ω = B1(0) ⊂ R2, A = I, n = χB1/2(0) +
2χB1(0)\B1/2(0), where χB denotes the character-
istic function of the set B. The exact solution
is prescribed as u(x, y) = sin(k(x + y)). The
computations are done with NGSolve, [22, 23].
Fig. 1 show the performance of the h-version
Galerkin method for p ∈ {1, 2, 3, 4} and k ∈
{10, 50, 100, 200, 500, 1000}, where the relative
error in the energy norm ‖ · ‖1,k,1 is plotted ver-
sion the number of degrees of freedom per wave-
length Nλ := 2πN1/d

k|Ω|1/d with N = dimSp,1(Th).

3.2 Scale resolution condition

We consider for the unit ball Ω = B1(0) for
d ∈ {1, 2} the problem

−∆u− k2(2− x2)u = f in Ω,

∂nu− iku = g on Γ

with prescribed solution u(x) = sin(kx) for d =
1 and u(x, y) = sin(k(x + y)) for d = 2. For
k0 = 2 for d = 1 and k0 = 2.1 for d = 2, select
for each polynomial degree p ≥ 2 the wavenum-
ber k = kp0 and the quasi-uniform mesh size
h such that a prescribed number of degrees of
freedom per wavelength Nλ is achieved. Fig. 2
presents the ratio of the Galerkin error and the
best approximation error for different values of
Nλ ∼ 1/c1 and indicates the necessity to require
c1 to be sufficiently small.
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