wavenumber-explicit $h p$-FEM for Helmholtz problems in piecewise smooth media

Maximilian Bernkopf ${ }^{1}$, Théophile Chaumont-Frelet ${ }^{2}$, Jens Markus Melenk ${ }^{1, *}$
${ }^{1}$ TU Wien, Wien Austria
${ }^{2}$ INRIA
*Email: melenk@tuwien.ac.at

Abstract

We analyze the $h p$-FEM applied to Helmholtz problems with piecewise analytic coefficients and a variety of boundary conditions. We show that quasi-optimality is reached under the following conditions on the mesh size h and the approximation order p; a) $k h / p$ is sufficiently small and b) $p \gtrsim \log k$.

Keywords: Helmholtz equation, heterogeneous media, high frequency problems

1 Introduction

Time-harmonic wave propagation problems play an important role in a wide range of physical and industrial applications. A prominent example is the Helmholtz equation, which arises, e.g., in acoustics. The heterogeneous Helmholtz equation

$$
\begin{equation*}
-\nabla \cdot(A(x) \nabla u)+k^{2} n^{2}(x) u=f \tag{1}
\end{equation*}
$$

with coefficients A, n describes time-harmonic acoustic waves in inhomogeneous media comprising materials with different acoustic properties (e.g., density, speed of sound). An important parameter in this model is the wavenumber $k>0$, which is proportional to the underlying frequency.

A key issue with numerical methods for such equations are dispersion errors, which manifest themselves in the fact that, as the wavenumber k increases, the discrepancy between the error of the numerical method and the best approximation widens. In particular for homogeneous media, i.e., the Helmholtz equation with constant coefficients, this "pollution effect", [12], has been analyzed on translation invariant meshes, [1] and then on unstructured meshes [18,19] where it has been shown that high order Galerkin methods are better suited to deal with dispersion errors than low-order methods. In fact, while fixed order methods cannot be "pollution-free", [2], the $h p$-version of the Galerkin method ($h p$ FEM) achieves quasi-optimality if the following
scale-resolution condition

$$
\begin{equation*}
\frac{k h}{p} \leq c_{1} \quad \text { and } \quad p \geq c_{2} \log k \tag{2}
\end{equation*}
$$

holds, $[10,18,19]$. Here, $c_{2}>0$ is an arbitrary constant and c_{1} is required to be sufficiently small. In the present work we extend this result to the case of piecewise analytic coefficients A, n. For globally smooth coefficients A, n, such a result has recently been shown in $[11,14,15]$ using different techniques based on semiclassical analysis.

The insight underlying $[18,19]$ and its generalization here to the heterogeneous Helmholtz equation is a splitting of solutions of Helmholtz problems into a part with finite regularity and good k-dependence and an analytic part with explicit control in terms of k ("regularity by decomposition"). This idea has been successfully applied in a variety of related contexts such as problems with corner singularities [5,10], discontinuous Galerkin [17], continuous interior penalty [9,24], FEM-BEM coupling, [21], and multiscale [6] methods. The technique of regularity by decomposition proves useful also in the context of a posteriori error estimation $[4,8]$ and in other wave propagation problems $[7,16,20]$.

2 Main result

2.1 Problem formulation and notation

We consider a bounded Lipschitz domain $\Omega \subset$ $\mathbb{R}^{d}, d \in\{2,3\}$. We assume $\Gamma:=\partial \Omega$ is analytic. We assume that Ω is partitioned into a set \mathcal{P} of non-overlapping Lipschitz subdomains such that $\cup_{P \in \mathcal{P}} \bar{P}=\bar{\Omega}$. We introduce the internal interface $\Gamma_{\text {interf }}:=\cup_{P \in \mathcal{P}} \partial P \backslash \Gamma$ and require the pieces $\partial P, P \in \mathcal{P}$, to be analytic. We say that a function G is piecewise analytic if, for some C_{G}, $\gamma_{G}>0$ and all $P \in \mathcal{P}$

$$
\left\|D^{\beta} G\right\|_{L^{\infty}(P)} \leq C_{G} \gamma_{G}^{|\beta|}|\beta|!\quad \forall \beta \in \mathbb{N}_{0}^{d} .
$$

For $T \subset \mathbb{R}^{d}$ we introduce the k-dependent analyticity class $\mathfrak{A}(C, \gamma, T)$ consists of functions G
with

$$
\left\|D^{\beta} G\right\|_{L^{2}(T)} \leq C \gamma^{|\beta|} \max \{|\beta|, k\}^{|\beta|} \quad \forall \beta \in \mathbb{N}_{0}^{d} .
$$

We write $u \in \mathfrak{A}(C, \gamma, \mathcal{P})$ to indicate that the function u defined on Ω satisfies $u \in \mathfrak{A}(C, \gamma, P)$ for all $P \in \mathcal{P}$. We consider

$$
\begin{align*}
-\nabla \cdot(A(x) \nabla u)-k^{2} n^{2} u & =f & & \text { on } \Omega, \tag{3}\\
\partial_{n_{A}} u-\mathrm{i} k u & =g & & \text { on } \Gamma, \tag{4}
\end{align*}
$$

where $A \in L^{\infty}\left(\Omega, \mathrm{GL}\left(\mathbb{C}^{d \times d}\right)\right)$ satisfies for some $c_{\text {min }}>0$

$$
\inf _{x \in \Omega} \operatorname{Re} \xi^{H} A(x) \xi \geq c_{\min }|\xi|^{2} \quad \forall \xi \in \mathbb{C}^{d}
$$

and both A, n are piecewise analytic. With the outer normal vector \mathbf{n} on Γ we denote by $\partial_{n_{A}} v:=\mathbf{n}^{\top} A(x) \nabla v$ the co-normal derivative. Our analysis is carried out in the norm

$$
\|v\|_{1, k}^{2}:=\|\nabla u\|_{L^{2}(\Omega)}^{2}+k^{2}\|v\|_{L^{2}(\Omega)}^{2} .
$$

We will require the following
Assumption 1 (polynomial well-posedness)
There are $\theta \geq 0$ and $C>0$ such that for $k \geq 1$ (3), (4) has a unique solution $u \in H^{1}(\Omega)$ with

$$
\|u\|_{1, k} \leq C k^{\theta}\left[\|f\|_{L^{2}(\Omega)}+k^{1 / 2}\|g\|_{L^{2}(\Gamma)}\right]
$$

2.2 Quasi-optimality of $h p$-FEM

We consider meshes \mathcal{T}_{h} that satisfy the assumptions spelled out explicitly in [18, Sec. 5]. Essentially, these meshes are such that with the reference simplex \widehat{K} the element maps $F_{K}: \widehat{K} \rightarrow$ $K \in \mathcal{T}$ can be factored $F_{K}=R_{K} \circ A_{K}$ for some affine maps A_{K} with $\left\|A_{K}^{\prime}\right\| \sim h$ and $\left\|\left(A_{K}^{\prime}\right)^{-1}\right\| \sim$ h^{-1} and analytic maps R_{K} whose analyticity properties can be controlled uniformly in K and h. Additionally, we require the mesh to conform with the partition \mathcal{P}, i.e., each for each $K \in \mathcal{T}$ there is $P \in \mathcal{P}$ such that $K \subset P$.

With the space \mathcal{P}_{p} of polynomials of degree p, we introduce the approximation space $V_{N}:=$ $S^{p, 1}(\mathcal{T}):=\left\{v \in H^{1}(\Omega)|v|_{K} \circ F_{K} \in \mathcal{P}_{p} \quad \forall P \in\right.$ $\mathcal{P}\}$. The $h p$-FEM approximation to the solution u of (3), (4) is: Find $u_{N} \in S^{p, 1}\left(\mathcal{T}_{h}\right)$ such that

$$
\begin{aligned}
b\left(u_{N}, v\right) & =\ell(v) \quad \forall v \in S^{p, 1}\left(\mathcal{T}_{h}\right), \\
b\left(u_{N}, v\right) & :=\int_{\Omega} A(x) \nabla u_{N} \cdot \nabla \bar{v}-k^{2} n^{2}(x) u_{N} \bar{v} \\
& +\mathrm{i} k \int_{\Gamma} u_{N} \bar{v}, \\
\ell(v) & :=\int_{\Omega} f \bar{v}+\int_{\Gamma} g \bar{v}
\end{aligned}
$$

Theorem 2 ([3]) Let u denote the solution of (3), (4) and u_{N} the Galerkin approximation from (5). Under the assumptions above, given $c_{2}>0$ there are $C, c_{1}>0$ independent of k, h, p such that under the scale resolution assumption

$$
\begin{equation*}
\frac{k h}{p} \leq c_{1} \quad \text { and } \quad p \geq c_{2} \log k \tag{6}
\end{equation*}
$$

there holds the quasi-optimality

$$
\left\|u-u_{N}\right\|_{1, k} \leq C \inf _{v \in S^{p, 1}\left(\mathcal{T}_{h}\right)}\|u-v\|_{1, k} .
$$

As the sesquilinear form b satisfies a Gårding inequality, the proof of this theorem relies on a duality argument ("Schatz argument") as worked out in $[18,19]$. Specifically, one introduces the dual solution operator $f \mapsto \mathcal{S}^{*}(f)$ by

$$
b\left(v, \mathcal{S}^{*}(f)\right)=(v, f)_{L^{2}(\Omega)} \quad \forall v \in H^{1}(\Omega)
$$

and the adjoint approximation property

$$
\eta:=\sup _{f \in L^{2}} \inf _{v \in S^{p}, 1}\left(\mathcal{T}_{h}\right) \frac{\left\|\mathcal{S}^{*}(f)-v\right\|_{1, k}}{\|f\|_{L^{2}(\Omega)}} .
$$

Then, one estimates for the Galerkin error $e_{N}:=$ $u-u_{N}$ using Galerkin orthogonality

$$
\begin{aligned}
\left\|e_{N}\right\|_{L^{2}}^{2} & =\left|b\left(e_{N}, \mathcal{S}^{*}\left(e_{N}\right)\right)\right| \\
& =\inf _{v_{N} \in V_{N}}\left|b\left(e_{N}, \mathcal{S}^{*}\left(e_{N}\right)-v_{N}\right)\right| \\
& \lesssim\left\|e_{N}\right\|_{1, k} \eta\left\|e_{N}\right\|_{L^{2}},
\end{aligned}
$$

which leads to $\left\|e_{N}\right\|_{L^{2}} \lesssim \eta\left\|e_{N}\right\|_{1, k}$. Hence,

$$
\begin{aligned}
& \left\|e_{N}\right\|_{1, k}^{2} \lesssim\left|b\left(e_{N}, e_{N}\right)\right|+k^{2}\left\|e_{N}\right\|_{L^{2}}^{2} \\
& \lesssim \inf _{v \in V_{N}}\left|b\left(u-v, e_{N}\right)\right|+\left(k \eta\left\|e_{N}\right\|_{1, k}\right)^{2} \\
& \lesssim \operatorname{iff}_{v \in V_{N}}\|u-v\|_{1, k}\left\|e_{N}\right\|_{1, k}+\left(k \eta\left\|e_{N}\right\|_{1, k}\right)^{2} .
\end{aligned}
$$

We conclude Thm. 2 if $k \eta$ is sufficiently small.
This argument reduces the proof of the quasioptimality result to the analysis of η. In turn, the best approximation problem in the definition of η requires the understanding of the regularity properties of the solution $\mathcal{S}^{*}(f)$ of the adjoint problem. This adjoint problem is again a Helmholtz problem with the same structure as (3), (4). The following Theorem 3 shows that $\mathcal{S}^{*}(f)$ can be written as $\mathcal{S}^{*}(f)=u_{H^{2}}+$ $u_{\mathfrak{A}}$ with $\left\|u_{H^{2}}\right\|_{H^{2}\left(\Omega \backslash \Gamma_{\text {interf }}\right)} \lesssim\|f\|_{L^{2}}$ and $u_{\mathfrak{A}} \in$ $\mathfrak{A}\left(C\|f\|_{L^{2}} k^{\theta}, \gamma, \mathcal{P}\right)$. Control of η is achieved by approximating $u_{H^{2}}$ and $u_{\mathfrak{A}}$ from $S^{p, 1}\left(\mathcal{T}_{h}\right)$.

2.3 Regularity by decomposition

Underlying the proof of Theorem 2 is the following decomposition result:
Theorem 3 ([3]) Under the above assumptions, for every $(f, g) \in L^{2}(\Omega) \times H^{1 / 2}(\Gamma)$ the solution u of (3), (4) can be written as $u=u_{H^{2}}+u_{\mathfrak{A}}$ with
$\left\|u_{H^{2}}\right\|_{H^{2}\left(\Omega \backslash \Gamma_{\text {interf }}\right)} \leq C\left[\|f\|_{L^{2}(\Omega)}+\|g\|_{H^{1 / 2}(\Gamma)}\right]$, $u_{\mathfrak{A}} \in \mathfrak{A}\left(C\left[\|f\|_{L^{2}}+\|g\|_{H^{1 / 2}}\right] k^{\theta}, \gamma, \mathcal{P}\right)$
for some $C, \gamma>0$ independent of k.

2.4 Ingredients of the proof of Thm. 3

The proof of Thm. 3 relies on an auxiliary problem: Let $w=\mathcal{S}^{+}(f, g)$ be the solution of

$$
\begin{align*}
-\nabla \cdot(A(x) \nabla w)+k^{2} w & =f & & \text { on } \Omega, \tag{7}\\
\partial_{n_{A}} w & =g & & \text { on } \Gamma \tag{8}
\end{align*}
$$

By Lax-Milgram the operator \mathcal{S}^{+}is well-defined, and $\mathcal{S}^{+}(f, g)$ is piecewise H^{2} with

$$
\begin{equation*}
\left\|\mathcal{S}^{+}(f, g)\right\|_{H^{2}\left(\Omega \backslash \Gamma_{\text {interf }}\right)} \lesssim\|f\|_{L^{2}}+\|g\|_{H^{1 / 2}} \tag{9}
\end{equation*}
$$

with implied constant independent of k. A second ingredient of the proof of Thm. 3 are filter operators:

Lemma 4 ([3]) For each $\eta>1$ there operators $H_{\eta}: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ and $H_{\eta}^{\Gamma}: L^{2}(\Gamma) \rightarrow$ $L^{2}(\Gamma)$ such that for $\varepsilon \in[0,1 / 2)$ and $0 \leq s^{\prime} \leq s$ and $L_{\eta}:=\mathrm{I}-H_{\eta}$ and $L_{\eta}^{\Gamma}:=\mathrm{I}-H_{\eta}^{\Gamma}$:

1. $\left\|H_{\eta}\right\|_{\tilde{H}^{-\varepsilon}(\Omega)} \leq C_{\varepsilon}(\eta k)^{-\varepsilon}\|f\|_{L^{2}(\Omega)}$.
2. $\left\|H_{\eta}^{\Gamma} f\right\|_{H^{s^{\prime}}(\Gamma)} \leq C_{s, s^{\prime}}(\eta k)^{-\left(s-s^{\prime}\right)}\|f\|_{H^{s}(\Gamma)}$.
3. $L_{\eta} f \in \mathfrak{A}\left(C\|f\|_{L^{2}(\Omega)}, \eta, \Omega\right)$.
4. $L_{\eta}^{\Gamma} f$ is the restriction to Γ of a function $F \in \mathfrak{A}\left(C\|f\|_{H^{-1 / 2}(\Gamma)}, \gamma, T\right)$ for some tubular neighborhood T of Γ.
To prove Thm. 3 one introduces the solution operator \mathcal{S}^{-}by denoting $\mathcal{S}^{-}(f, g)$ the solution of (3), (4) with data f, g. Then, one writes

$$
\begin{aligned}
u & =\mathcal{S}^{+}\left(H_{\eta} f, H_{\eta}^{\Gamma} g\right)+\mathcal{S}^{-}\left(L_{\eta} f, L_{\eta}^{\Gamma} g\right)+\mathrm{r} \\
& =: u_{H^{2}, 0}+u_{\mathfrak{R}, 0}+\mathrm{r} .
\end{aligned}
$$

By (9), one has

$$
\begin{aligned}
& \left\|u_{H^{2}, 0}\right\|_{H^{2}\left(\Omega \backslash \Gamma_{\text {interf }}\right.} \lesssim \\
& \left\|H_{\eta} f\right\|_{L^{2}}+\left\|H_{\eta}^{\Gamma} g\right\|_{H^{1 / 2}} \lesssim\|f\|_{L^{2}}+\|g\|_{H^{1 / 2}}
\end{aligned}
$$

with implied constants independent of k, η. By the piecewise analyticity of the data A, n and the analyticity of $\Gamma_{\text {interf }}, \Gamma$, the function $u_{\mathfrak{R}, 0}$ is piecewise analytic, and [3] asserts

$$
u_{\mathfrak{A}, 0} \in \mathfrak{A}\left(C k^{\theta}\left(\|f\|_{L^{2}}+\|g\|_{H^{1 / 2}}\right), \gamma, \mathcal{P}\right)
$$

for some $\gamma>0$ independent of k. Finally, the remainder r satisfies

$$
\begin{aligned}
-\nabla \cdot(A(x) \nabla \mathrm{r})-k^{2} n^{2} \mathrm{r} & =2 k^{2} u_{H^{2}, 0}=: f_{1} \text { on } \Omega, \\
\partial_{n_{A}} \mathrm{r}-\mathrm{i} k \mathrm{r} & =\mathrm{i} k u_{H^{2}, 0}=: g_{1} \quad \text { on } \Gamma .
\end{aligned}
$$

Lax-Milgram and the properties of the operators $H_{\eta}, H_{\eta}^{\Gamma}$ then allow one to show with $\varepsilon=1 / 4$

$$
\left\|f_{1}\right\|_{L^{2}}+\left\|g_{1}\right\|_{H^{1 / 2}} \leq C \eta^{-\varepsilon}\left[\|f\|_{L^{2}}+\|g\|_{H^{1 / 2}}\right]
$$

with a $C>0$ independent of η. We may thus select $\eta>1$ such that $C \eta^{1 / 2} \leq 1 / 2<1$. In conclusion, we have shown with this choice of η

$$
\mathcal{S}^{-}(f, g)=u_{H^{2}, 0}+u_{\mathfrak{R}, 0}+\mathcal{S}^{-}\left(f_{1}, g_{1}\right)
$$

with $\left\|f_{1}\right\|_{L^{2}}+\left\|g_{1}\right\|_{H^{1 / 2}} \leq 1 / 2\left[\|f\|_{L^{2}}+\|g\|_{H^{1 / 2}}\right]$. The decomposition can be repeated for $\mathcal{S}^{-}\left(f_{1}, g_{1}\right)$, and a geometric series argument then concludes the proof.

2.5 Extensions of Thm. 3

The proof of Thm. 3 relies on a few principles that open the door to more general settings. Consider, for some boundary operator T_{k}^{-}the problem

$$
\begin{aligned}
L_{k}^{-} u:=-\nabla \cdot(A(x) \nabla u)-k^{2} n^{2}(x) u & =f & & \text { on } \Omega, \\
\partial_{n_{A}} u-T_{k}^{-} u & =g & & \text { on } \Gamma,
\end{aligned}
$$

For its analysis, introduce the auxiliary problem

$$
\begin{aligned}
L_{k}^{+} u:=-\nabla \cdot(A(x) \nabla u)+k^{2} u & =f & & \text { on } \Omega, \\
\partial_{n_{A}} u-T_{k}^{+} u & =g & & \text { on } \Gamma
\end{aligned}
$$

for some boundary operator T_{k}^{+}. One can generalize the procedure of Section 2.4 to this setting, if the following requirements are satisfied:

1. L_{k}^{-}and L_{k}^{+}have the same principal part (which they do);
2. $T_{k}^{-}-T_{k}^{+}$is an operator of order zero of the form $T_{k}^{-}-T_{k}^{+}=k B+\mathfrak{a}$, where the zero-th order operator B is controlled uniformly in k and \mathfrak{a} maps into a class of analytic functions in the sense that $\mathfrak{a} u$ is the restriction to Γ of a function $\mathfrak{U} \in \mathfrak{A}\left(C k^{\beta}\|u\|_{L^{2}(\Gamma)}, \gamma, T\right)$ for some tubular neighborhood T of Γ and some β.
3. the solution operator \mathcal{S}^{+}for the auxiliary problem admits the shift theorem (9) uniformly in k;
4. the solution $\mathcal{S}^{-}(f, g)$ is in an analyticity class $\mathfrak{A}\left(C k^{\beta}, \gamma, \mathcal{P}\right)$ for some $\beta \in \mathbb{R}$ if $f \in$ $\mathfrak{A}\left(C_{f}, \gamma_{f}, \mathcal{P}\right)$ and g is the restriction to Γ of a function $G \in \mathfrak{A}\left(C_{g}, \gamma_{g}, T\right)$ for some tubular neighborhood T of Γ.

Example 5 (exact b.c. for $d=3$) Let DtN_{k} be the exterior Dirichlet-to-Neumann operator given by $\mathrm{DtN}_{k}: g \mapsto \partial_{n} v$, where v solves the homogeneous Helmholtz equation with Sommerfeld radiation condition:

$$
\begin{aligned}
& -\Delta v-k^{2} v=0 \quad \text { in } \mathbb{R}^{d} \backslash \bar{\Omega},\left.\quad v\right|_{\Gamma}=g \\
& \partial_{r}-\mathrm{i} k v=o\left(|x|^{-1}\right) \quad \text { for }|x| \rightarrow \infty
\end{aligned}
$$

Select $T_{k}^{-}:=\mathrm{DtN}_{k}$. The corresponding operator T_{k}^{+}is then taken as the Dirichlet-to-Neumann operator DtN_{0} for $k=0$, where the radiation condition required in the definition of DtN_{0} is such that $v=O(1 /|x|)$. A decomposition result similar to Thm. 3 is then asserted in [3].

Example 6 ($2^{\text {nd }}$ order ABC) A possible choice for T_{k}^{-}is $T_{k}^{-} u=\alpha \Delta_{\Gamma} u-\beta u$ with Δ_{Γ} being the Laplace-Beltrami operator on Γ and $\alpha, \beta \in \mathbb{C}$ parameters with $\operatorname{Im} \alpha \sim 1 / k, \operatorname{Re} \alpha=O\left(k^{-2}\right)$, $\beta=O(k)$. One may choose T_{k}^{+}as the leading order term of T_{k}^{-}, i.e., $T_{k}^{+} u=\alpha \Delta_{\Gamma} . \quad A$ decomposition result similar to Thm. 3 can be achieved, [3]. The analysis is performed in the norm $\|v\|_{1, k, 1}:=\|v\|_{1, k}+k^{-1 / 2}|v|_{H^{1}(\Gamma)}$.

2.6 Extensions of Thm. 2

Examples 5, 6 assert generalizations of Thm. 3 to other other boundary conditions. The extension of Thm. 2 to that setting requires modifications of the proof. Indeed, the proof of Thm. 3 sketched above uses a uniform-in- k continuity of b. In more general situations such as the one given by Example 5, one merely has estimates of the form $\left|\left\langle\mathrm{DtN}_{k} u, v\right\rangle\right| \lesssim\left|\left\langle\mathrm{DtN}_{0} u, v\right\rangle\right|+$ $|\langle k B u, v\rangle|+|\langle\mathfrak{a} u, v\rangle|$, where B is an operator of order zero (bounded uniformly in k) and the operator \mathfrak{a} maps into a class of analytic functions as described in Sec. 2.5 for the difference $T_{k}^{-}-T_{k}^{+}$. The proof of quasi-optimality of the Galerkin method for the problem of Example 5 then requires additional duality arguments to
treat the terms involving the operators $k B$ and $\mathfrak{a},[3]$. We refer to $[16,20]$ for similar treatments in the case of BEM or Maxwell's equation.

3 Numerical Results

$3.12^{\text {nd }}$ order ABC

We consider (3) equipped with $2^{n d}$ order absorbing boundary conditions (ABC) of the form given in Example 6. The parameters α, β are selected as $\alpha=-\mathrm{i} /(2 k), \beta=\mathrm{i} k-1 / 2-\mathrm{i} /(8 k)$. We refer to $[13$, Sec. 3.3.3] for a more detailed discussion of different choices of the parameters $\alpha, \beta . \Omega=B_{1}(0) \subset \mathbb{R}^{2}, A=\mathrm{I}, n=\chi_{B_{1 / 2}(0)}+$ $2 \chi_{B_{1}(0) \backslash B_{1 / 2}(0)}$, where χ_{B} denotes the characteristic function of the set B. The exact solution is prescribed as $u(x, y)=\sin (k(x+y))$. The computations are done with NGSolve, [22, 23]. Fig. 1 show the performance of the h-version Galerkin method for $p \in\{1,2,3,4\}$ and $k \in$ $\{10,50,100,200,500,1000\}$, where the relative error in the energy norm $\|\cdot\|_{1, k, 1}$ is plotted version the number of degrees of freedom per wavelength $N_{\lambda}:=\frac{2 \pi N^{1 / d}}{k|\Omega|^{1 / d}}$ with $N=\operatorname{dim} S^{p, 1}\left(\mathcal{T}_{h}\right)$.

3.2 Scale resolution condition

We consider for the unit ball $\Omega=B_{1}(0)$ for $d \in\{1,2\}$ the problem

$$
\begin{aligned}
-\Delta u-k^{2}\left(2-x^{2}\right) u=f & \text { in } \Omega \\
\partial_{n} u-\mathrm{i} k u=g & \text { on } \Gamma
\end{aligned}
$$

with prescribed solution $u(x)=\sin (k x)$ for $d=$ 1 and $u(x, y)=\sin (k(x+y))$ for $d=2$. For $k_{0}=2$ for $d=1$ and $k_{0}=2.1$ for $d=2$, select for each polynomial degree $p \geq 2$ the wavenumber $k=k_{0}^{p}$ and the quasi-uniform mesh size h such that a prescribed number of degrees of freedom per wavelength N_{λ} is achieved. Fig. 2 presents the ratio of the Galerkin error and the best approximation error for different values of $N_{\lambda} \sim 1 / c_{1}$ and indicates the necessity to require c_{1} to be sufficiently small.

References

[1] Mark Ainsworth. Discrete dispersion relation for $h p$-version finite element approximation at high wave number. SIAM J. Numer. Anal., 42(2):553-575, 2004.
[2] I. Babuška and S. Sauter. Is the pollution effect of the FEM avoidable for the

Figure 1: h-FEM for $p=1,2,3,4$ for heterogeneous Helmholtz equation with $2^{\text {nd }}$ order ABCs

Helmholtz equation considering high wave numbers? SIAM Review, 42:451-484, 2000.
[3] M. Bernkopf, T. Chaumont-Frelet, and J.M. Melenk. Wavenumber-explicit stability and convergence analysis of $h p$-finite element discretizations of Helmholtz problems in piecewise smooth media. (in prep.)
[4] T. Chaumont-Frelet, A. Ern, and M. Vohralík. On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation. accepted in Numer. Math., 2021.
[5] T. Chaumont-Frelet and S. Nicaise. Highfrequency behaviour of corner singularities in Helmholtz problems. ESAIM Math. Model. Numer. Anal., 5:1803-1845, 2018.

Figure 2: Ratio of Galerkin error and best approximation error (BA) for $k=k_{0}^{p}(p=2,3, \ldots)$ and h determined by prescribed N_{λ}. Top: $d=1$ and $k_{0}=2$. Bottom: $d=2$ and $k_{0}=2.1$.
[6] T. Chaumont-Frelet and F. Valentin. A multiscale hybrid-mixed method for the Helmholtz equation in heterogeneous domains. SIAM J. Numer. Anal., 58(2):10291067, 2020.
[7] T. Chaumont-Frelet and P. Vega. Frequency-explicit a posteriori error estimates for finite element discretizations of Maxwell's equations. hal-02943386, 2021.
[8] W. Dörfler and S. Sauter. A posteriori error estimation for highly indefinite Helmholtz problems. Comput. Meth. Appl. Math., 13:333-347, 2013.
[9] Y. Du and H. Wu. Preasymptotic error analysis of higher order FEM and CIPFEM for Helmholtz equation with high wave number. SIAM J. Numer. Anal., 53(2):782-804, 2015.
[10] S. Esterhazy and J. M. Melenk. On stability of discretizations of the Helmholtz equation. In Numerical analysis of multiscale problems, volume 83 of Lect. Notes Comput. Sci. Eng., pages 285-324. Springer, Heidelberg, 2012.
[11] Jeffrey Galkowski and Euan A. Spence. The Helmholtz boundary element method does not suffer from the pollution effect, 2022. arXiv:2201.09721.
[12] F. Ihlenburg and I. Babuška. Finite element solution to the Helmholtz equation with high wave number. Part II: The $h p-$ version of the FEM. SIAM J. Numer. Anal., 34:315-358, 1997.
[13] Frank Ihlenburg. Finite element analysis of acoustic scattering, volume 132 of Applied Mathematical Sciences. Springer-Verlag, New York, 1998.
[14] David Lafontaine, Euan A. Spence, and Jared Wunsch. Wavenumber-explicit convergence of the $h p$-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients, 2020. arXiv:2010.00585.
[15] David Lafontaine, Euan A. Spence, and Jared Wunsch. Decompositions of highfrequency Helmholtz solutions via functional calculus, and application to the finite element methods, 2021. arXiv:2102.13081.
[16] M. Löhndorf and J.M. Melenk. Wavenumber-explicit $h p$-BEM for high frequency scattering. SIAM J. Numer. Anal., 49(6):2340-2363, 2011.
[17] J. M. Melenk, A. Parsania, and S. Sauter. General dg-methods for highly indefinite Helmholtz problems. Journal of Scientific Computing, 57(3):536-581, Dec 2013.
[18] J. M. Melenk and S. Sauter. Convergence analysis for finite element discretizations
of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comp., 79(272):1871-1914, 2010.
[19] J. M. Melenk and S. Sauter. Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal., 49(3):1210-1243, 2011.
[20] Jens M. Melenk and Stefan A. Sauter. Wavenumber-explicit $h p$-FEM analysis for Maxwell's equations with transparent boundary conditions. Found. Comput. Math., 21(1):125-241, 2021.
[21] J.M. Melenk, A. Rieder, and I. Perugia. wavenumber-explicit analysis of FEMBEM mortar coupling for the Helmholtz equation, (in prep.).
[22] Joachim Schöberl. Finite Element Software NETGEN/NGSolve version 6.2. https:// ngsolve.org/.
[23] Joachim Schöberl. NETGEN - An advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science, 1(1):41-52, Jul 1997.
[24] Lingxue Zhu and Haijun Wu. Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: $h p$ version. SIAM J. Numer. Anal., 51(3):1828-1852, 2013.

