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Abstract

We analyze the hp-FEM applied to Helmholtz
problems with piecewise analytic coefficients and
a variety of boundary conditions. We show that
quasi-optimality is reached under the following
conditions on the mesh size h and the approxi-
mation order p; a) kh/p is sufficiently small and
b) p 2 logk.
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1 Introduction

Time-harmonic wave propagation problems play
an important role in a wide range of physical
and industrial applications. A prominent ex-
ample is the Helmholtz equation, which arises,
e.g., in acoustics. The heterogeneous Helmholtz
equation

~V - (A(x)Vu) + k*n®*(2)u = f (1)

with coefficients A, n describes time-harmonic
acoustic waves in inhomogeneous media com-
prising materials with different acoustic prop-
erties (e.g., density, speed of sound). An impor-
tant parameter in this model is the wavenumber
k > 0, which is proportional to the underlying
frequency.

A key issue with numerical methods for such
equations are dispersion errors, which manifest
themselves in the fact that, as the wavenumber
k increases, the discrepancy between the error
of the numerical method and the best approxi-
mation widens. In particular for homogeneous
media, i.e., the Helmholtz equation with con-
stant coefficients, this “pollution effect”, [12], has
been analyzed on translation invariant meshes,

[1] and then on unstructured meshes [18,19] where

it has been shown that high order Galerkin meth-
ods are better suited to deal with dispersion
errors than low-order methods. In fact, while
fixed order methods cannot be “pollution-free”,
[2], the hp-version of the Galerkin method (hp-
FEM) achieves quasi-optimality if the following

scale-resolution condition

— < and p>cologk  (2)
holds, [10,18,19]. Here, co > 0 is an arbitrary
constant and c; is required to be sufficiently
small. In the present work we extend this re-
sult to the case of piecewise analytic coefficients
A, n. For globally smooth coefficients A, n, such
a result has recently been shown in [11, 14, 15]
using different techniques based on semiclassical
analysis.

The insight underlying [18,19] and its gen-
eralization here to the heterogeneous Helmholtz
equation is a splitting of solutions of Helmholtz
problems into a part with finite regularity and
good k-dependence and an analytic part with
explicit control in terms of k (“regularity by de-
composition”). This idea has been successfully
applied in a variety of related contexts such as
problems with corner singularities [5,10], discon-
tinuous Galerkin [17], continuous interior penalty
[9,24], FEM-BEM coupling, [21], and multiscale
[6] methods. The technique of regularity by de-
composition proves useful also in the context of
a posteriori error estimation [4,8| and in other
wave propagation problems [7,16,20].

2 Main result

2.1 Problem formulation and notation

We consider a bounded Lipschitz domain €} C
RY, d € {2,3}. We assume I' := 9 is analytic.
We assume that Q is partitioned into a set P
of non-overlapping Lipschitz subdomains such
that UpepP = €. We introduce the internal
interface Tiptert := UpepdP \ I' and require the
pieces OP, P € P, to be analytic. We say that a
function G is piecewise analytic if, for some Cg,
va > 0and all P € P
ID°Gll o) < Cenld B! VB € NG,

For T C R? we introduce the k-dependent ana-
lyticity class 2((C,~,T) consists of functions G
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with
IDPG| 12y < CyPl max{|B], k}*I VB e NE.

We write u € 4(C,v,P) to indicate that the
function u defined on  satisfies u € A(C,~, P)
for all P € P. We consider

—V (A(x)Vu) = k*n*u=f onQ, (3)
Op,u—iku=g onl, (4)

where A € L>®(Q, GL(C%*?)) satisfies for some
Cmin > 0

inf Re& A(2)¢ > cpinlé|? V6 € C
xre

and both A, n are piecewise analytic. With
the outer normal vector n on I' we denote by
On,v = n' A(z)Vv the co-normal derivative.
Our analysis is carried out in the norm

I & = IVullZ2 i) + K2 [10]1Z220)-
We will require the following

Assumption 1 (polynomial well-posedness)
There are 8 > 0 and C' > 0 such that for k > 1
(3), (4) has a unique solution u € H*(Q) with

Jull1 6 < CK? [HfHL?(Q) + kl/QHQHL?(F)} :

2.2 Quasi-optimality of hp-FEM

We consider meshes 7j, that satisfy the assump-
tions spelled out explicitly in [18, Sec. 5. Essen-
tially, these meshes are such that with the ref-
erence simplex K the element maps Fi : K —
K € T can be factored F'x = Rg o Ak for some
affine maps Ax with || A% || ~ hand ||(A%) 7| ~
h~! and analytic maps Ry whose analyticity
properties can be controlled uniformly in K and
h. Additionally, we require the mesh to conform
with the partition P, i.e., each for each K € T
there is P € P such that K C P.

With the space P, of polynomials of degree
p, we introduce the approximation space Vy :=
SPUT) == {v e H(Q)|v|[g o Fx € P, VP €
P}. The hp-FEM approximation to the solution
u of (3), (4) is: Find uy € SP(Ty) such that

blun,v) = £(v) Yo € SPY(Ty), (5)
blun,v) = /QA(x)VuN VT — k*n?(2)unT
+ ik/FuNU,

£(v) ::/va—i-/FgU

Theorem 2 ( [3]) Let u denote the solution of
(3), (4) and uy the Galerkin approxzimation from
(5). Under the assumptions above, given ca > 0
there are C, ¢1 > 0 independent of k, h, p such
that under the scale resolution assumption

— < and

p>cologk  (6)
p

there holds the quasi-optimality

lu —un|lix <C in

1k
veSP (T,

lu—wv
)
As the sesquilinear form b satisfies a Garding in-
equality, the proof of this theorem relies on a du-
ality argument (“Schatz argument”) as worked
out in [18,19|. Specifically, one introduces the
dual solution operator f +— S*(f) by

b(v,S*(f)) = (Uaf)LZ(Q)

and the adjoint approximation property

Yo € HY(Q)

1S*(f) = vll1x

n:= sup inf

serzvese (1) [ fllz2co)

Then, one estimates for the Galerkin error ey :=
u — uy using Galerkin orthogonality

lewllZ> = [b(en, S*(en))]

— inf |b(en,S*(en) —
UNHGIVN\ (en,S*(en) —vn)|
S llenlluenllen|lpe,

which leads to |len||z2 < nllen||1,x Hence,

lenllTr S b(en,en)| + K [len 72

< inf |b(u—v,en)| + (knllenllr )’
veVn

< inf flu—vlliellenie + (Enllen|le)?
veVN

We conclude Thm. 2 if kn is sufficiently small.
This argument reduces the proof of the quasi-
optimality result to the analysis of 1. In turn,
the best approximation problem in the defini-
tion of 7 requires the understanding of the reg-
ularity properties of the solution S*(f) of the
adjoint problem. This adjoint problem is again
a Helmholtz problem with the same structure
as (3), (4). The following Theorem 3 shows
that S*(f) can be written as S*(f) = uy2 +
ug with |lugz || g2@\Mpen) S [1fllz2 and vy €
A(C|| f||2k?, v, P). Control of 7 is achieved by
approximating u g2 and ug from SP1(Ty).
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2.3 Regularity by decomposition

Underlying the proof of Theorem 2 is the fol-
lowing decomposition result:

Theorem 3 ( [3]) Under the above assumptions,
for every (f,g) € L*(Q) x HY2(T) the solution
w of (3), (4) can be written as u = ug2 + ugy
with

lwr2 | 20\ Pygers) < C |11 fll202) + ||9||H1/2(r)] ;
ug € A(CIfllz2 + llgllgar2] k2,7, P)

for some C, v > 0 independent of k.

2.4 Ingredients of the proof of Thm. 3

The proof of Thm. 3 relies on an auxiliary prob-
lem: Let w = ST(f, g) be the solution of

—V - (A@)Vw) +kw=f onQ, (7)
Op,w=g onl (8

By Lax-Milgram the operator ST is well-defined,
and ST(f, g) is piecewise H? with

ISTCf, D 2@\ Pingerr) S IFllz2 + gl (9)

with implied constant independent of k. A sec-
ond ingredient of the proof of Thm. 3 are filter
operators:

Lemma 4 ( [3]) For each n > 1 there opera-
tors Hy : L*(Q) — L*(Q) and H}; : L2(T) —
L3(T) such that for e € [0,1/2) and 0 < &' < s
and Ly :==1—H, and L}; = IfH};:

1. ||H77||f1—s(g) < Cs(nk)_EHfHL?(Q)-
2. | HY £l oy < Cowr )=l ro(ry-
3. L’]f € Ql<CHfHL2(Q)7777Q)

4. L,F]f is the restriction to I' of a function
F e UC fllg-1r2(ry, 7, T) for some tubu-
lar neighborhood T of T'.

To prove Thm. 3 one introduces the solution
operator S~ by denoting S~ (f,g) the solution
of (3), (4) with data f, g. Then, one writes

U= S+(ana Hgg) +8 (Lyf, ng) +r
=iug20+ ugo + T
By (9), one has

HuHQaOHH2(Q\Finterf) ’S
15y fllze + 1 Hy gllme S 1 fllzz + gl e

with implied constants independent of k, n. By
the piecewise analyticity of the data A, n and
the analyticity of I'intert, I', the function ug g is
piecewise analytic, and [3] asserts

uo € A(CK (|| fll 2 + Igllgr172), 7. P)

for some v > 0 independent of k. Finally, the
remainder r satisfies

—V - (A(2)Vr) — k*n’*r = 2k%uy2 5 =: fi on €,

On,t —ikr = ikug29 =:g1 on .

Lax-Milgram and the properties of the operators
H,, H}; then allow one to show with ¢ = 1/4
If1llze + Ngillgre < O~ {1 f [z + gl 2]

with a C' > 0 independent of n. We may thus
select 7 > 1 such that Cn'/? < 1/2 < 1. In
conclusion, we have shown with this choice of n

ST(f,9) =umz o +uyo+S (f1,01)

with || full 2+ llg1ll gz < 1/2[1fllz2 + gl gse]-
The decomposition can be repeated for S~ ( f1, g1),

and a geometric series argument then concludes
the proof.

2.5 Extensions of Thm. 3

The proof of Thm. 3 relies on a few principles
that open the door to more general settings.
Consider, for some boundary operator T,  the
problem

Liu:=-V-(A(x)Vu) — k*n*(z)u=f onQ,
Op,u—T, u=g onl,

For its analysis, introduce the auxiliary problem
Liu:=-V-(A@)Vu) + k*u = f
On,u—Tfu=g onT

on £,

for some boundary operator T,:r . One can gener-
alize the procedure of Section 2.4 to this setting,
if the following requirements are satisfied:

1. L, and L;‘ have the same principal part
(which they do);

2. T, —T]j is an operator of order zero of the
form T} —T,:' = kB+a, where the zero-th
order operator B is controlled uniformly in
k and a maps into a class of analytic func-
tions in the sense that au is the restriction
to I of a function 4 € Ql(CkﬁHtu(p), v, T)
for some tubular neighborhood T" of I and
some f3.
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3. the solution operator ST for the auxiliary
problem admits the shift theorem (9) uni-
formly in k;

4. the solution §7(f,g) is in an analyticity
class A(CkB,~,P) for some § € Rif f €
2A(Cy,7v¢,P) and g is the restriction to I
of a function G € A(Cy,~,,T) for some
tubular neighborhood T of T.

Example 5 (exact b.c. for d =3) Let DtN
be the exterior Dirichlet-to-Neumann operator
giwen by DtNg : g — 0,v, where v solves the
homogeneous Helmholtz equation with Sommer-
feld radiation condition:

—Av—FKk*v=0 de\ﬁ, vlr =g,

Or —ikv =o(|z|™Y)  for |z| = cc.

Select T} := DtNy. The corresponding operator
T,j is then taken as the Dirichlet-to-Neumann
operator DtNqg for k = 0, where the radiation
condition required in the definition of DtNg is
such that v = O(1/|z|). A decomposition result
similar to Thm. 3 is then asserted in [3].

Example 6 (2"¢ order ABC) A possible choice

for Ty~ is T, u = aAru — Bu with Ar being the
Laplace-Beltrami operator on I" and o, € C
parameters with Ima ~ 1/k, Rea = O(k™2),
B = O(k). One may choose T, as the lead-
ing order term of T, , i.e., T]j'u = aAr. A
decomposition result similar to Thm. 3 can be
achieved, [3]. The analysis is performed in the
norm ol = ol + kY20l ).

2.6 Extensions of Thm. 2

Examples 5, 6 assert generalizations of Thm. 3
to other other boundary conditions. The exten-
sion of Thm. 2 to that setting requires modifica-
tions of the proof. Indeed, the proof of Thm. 3
sketched above uses a uniform-in-k£ continuity
of b. In more general situations such as the
one given by Example 5, one merely has esti-
mates of the form [(DtNy u, v)| < [(DtNgu, v)|+
|(kBu,v)| 4+ |(au, v)|, where B is an operator of
order zero (bounded uniformly in k) and the
operator a maps into a class of analytic func-
tions as described in Sec. 2.5 for the difference
T, — T,j . The proof of quasi-optimality of the
Galerkin method for the problem of Example 5
then requires additional duality arguments to

treat the terms involving the operators kB and
a, [3]. We refer to [16,20] for similar treatments
in the case of BEM or Maxwell’s equation.

3 Numerical Results

3.1 2" order ABC

We consider (3) equipped with 2"¢ order ab-
sorbing boundary conditions (ABC) of the form
given in Example 6. The parameters o, § are
selected as o = —i/(2k), f =1k —1/2 —i/(8k).
We refer to [13, Sec. 3.3.3] for a more detailed
discussion of different choices of the parameters
a, B. Q= Bl(O) C RQ, A=1n= X B, 5(0) +
2X B, (0)\B, 12(0)> where x g denotes the character-
istic function of the set B. The exact solution
is prescribed as u(z,y) = sin(k(z + y)). The
computations are done with NGSolve, [22,23|.
Fig. 1 show the performance of the h-version
Galerkin method for p € {1,2,3,4} and k €
{10, 50, 100, 200, 500, 1000}, where the relative
error in the energy norm || - ||1x,1 is plotted ver-
sion the number of degrees of freedom per wave-

length Ny := 220077 with N = dim S71(7,).

3.2 Scale resolution condition

We consider for the unit ball = B;(0) for
d € {1,2} the problem

—Au—-K*Q2-2>)u=f inQ,
Opu—iku=g¢g onl

with prescribed solution u(x) = sin(kx) for d =
1 and u(z,y) = sin(k(z + y)) for d = 2. For
ko =2 for d =1 and kg = 2.1 for d = 2, select
for each polynomial degree p > 2 the wavenum-
ber k = kb and the quasi-uniform mesh size
h such that a prescribed number of degrees of
freedom per wavelength Ny is achieved. Fig. 2
presents the ratio of the Galerkin error and the
best approximation error for different values of
Ny ~ 1/c; and indicates the necessity to require
c1 to be sufficiently small.
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