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Abstract

We develop new numerical methods to compute
spectral properties of tight-binding Hamiltoni-
ans for disordered and defective topological in-
sulators, which characterize their remarkable elec-
tronic behavior. Our approach extends a recent
framework that uses rational �lters to probe the
continuous spectrum of in�nite-dimensional op-
erators [Colbrook et al., SIAM Rev. 2021].
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1 Introduction

Topological insulators (TIs) are renowned for
their remarkable electronic properties. They ex-
hibit quantised bulk Hall and edge conductances
and support electronic transport along edges and
interfaces, features that persist even when ma-
terial defects and disorder are present. These
physical characteristics can be understood and
quanti�ed through spectral properties of tight-
binding Hamiltonian models.

Computing the relevant spectral properties
of tight-binding models for disordered and de-
fective TIs in a principled manner poses a sig-
ni�cant challenge for two reasons:

1. Transport in the bulk and edge is medi-
ated by a continuum of generalized (non-
normalizable) eigenstates associated with
bands of continuous spectrum. In general,
the tight-binding Hamiltonian's spectrum
may contain an exotic mix of continuous
and discrete spectral types.

2. Periodic approximations and other arti�-
cial truncations of the computational do-
main may introduce spectral artifacts and,
in general, fail to rigorously approximate
continuous spectral properties of the Hamil-
tonian.

Here, we develop numerical methods that
overcome both challenges by working within a
framework recently proposed to compute dis-
crete and continuous spectral properties of in�nite-
dimensional operators [1�4]. We compute spec-
tra, approximate eigenstates, spectral measures,
spectral projections, transport properties, and
conductances of the tight-binding Hamiltonian.
Numerical examples are given for the Haldane
model, and the techniques extend easily to other
TIs in two and three dimensions.

2 The resolvent framework

Let A : D(A) → H be a self-adjoint operator
on a Hilbert space H with domain D(L). A has
the spectral decomposition

A =

∫

Λ(A)
λ dE(λ), (1)

where Λ(A) is the spectrum of A and E is the
projection-valued spectral measure. That is, for
each measureable set Ω ⊂ Λ(A), the spectral
projection onto Ω is given by E(Ω) =

∫
Ω dE(λ).

The resolvent framework for in�nite-dimensional
spectral computations uses samples of the resol-
vent operator,

R(A, z) = (A− zI)−1 (2)

at points z1, . . . , zℓ ∈ C in the complex plane to
construct rigorous approximations to both dis-
crete and continuous spectral properties of A.

In practice, this means solving shifted linear
equations of the form

(A− zkI)uk = f, k = 1, . . . , ℓ. (3)

For certain spectral properties, one must also
compute inner products in H.
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2.1 Spectrum and eigenstates

The spectrum Λ(A) can be computed with error
control [1] by using localization properties of the
ϵ-pseudospectrum, i.e., the ϵ−1 level sets of

∥R(A, z)∥H = sup
f∈H

√
⟨R(A, z)f, f⟩H

in the complex z-plane. A sequence of maximiz-
ing functions fk ∈ H (e.g., generated by shifted
power iterations with A) provide approximating
pseudo-eigenstates.

2.2 Spectral measures

We show how to construct spectrally smoothed
approximations of the projection-valued spec-
tral measure E([a, b]) using analogs of Stone's
theorem:

1

2πi
lim
ϵ→0+

∫ b

a
(R(A, λ+ iϵ)−R(A, λ− iϵ)) dλ

= E([a, b])− 1

2
(E({a})− E({b})) .

In particular, we remove the endpoint contribu-
tions and prove an extension of Stone's theorem
to higher-order smoothing kernels that achieve
rapid convergence as the smoothing parameter
ϵ → 0+. We also demonstrate why careful de-
formations of the integration contour on the left
can accelerate the computation of E([a, b]) by
orders of magnitude. This work is best under-
stood as an extension of the recent framework
for computing smoothed densities of scalar spec-
tral measures µf = d⟨E(λ)f, f⟩H [3].

2.3 Functional calculus

In a spirit similar to the projection-valued spec-
tral measure approximations, one can approxi-
mate the functional calculus of A via

f(A) =

∫
f(λ) dE(λ), (4)

coupled with suitable analogs of Stone's theo-
rem and careful contour deformations into the
complex λ-plane [4]. Of particular interest is the
time evolution operator for tight-binding Hamil-
tonians, corresponding to ft(λ) = exp(−iλt).

3 Haldane model experiments

The Haldane model describes electrons hopping
on a two-dimensional honeycomb lattice in the

presence of a periodic magnetic �eld with zero
net �ux. When the lattice is pristine (without
defects), the in�nite-dimensional Hamiltonian's
spectral properties can be studied analytically
by using Bloch's theorem for periodic media.
When the lattice contains edges, defects, or dis-
order, periodic and truncated approximations
are still applied heuristically. However, these
may introduce spectral artifacts such as spectral
pollution in the gap of the Bloch Hamiltonian.

In place of periodic or truncated approxima-
tions of the Haldane Hamiltonian A, we rigor-
ously approximate the action ofR(A, z) onH by
using rectangular sections of a banded in�nite-
dimensional representation of A [2]. Applying
the resolvent framework for in�nite-dimensional
spectral computations allows us to rigorously
approximate the spectral properties discussed in
section 2.

In particular, we use spectral projections to
compute bulk and edge conductances of A and
con�rm that these are quantized in the presence
of weak global disorder, even in the exotic mobil-
ity gap regime. The corresponding topological
phase diagrams of the Haldane model are com-
puted and wave-packet approximations are con-
structed to probe generalized eigenstates medi-
ating bulk and edge transport. The functional
calculus is applied to compute the time evolu-
tion of topologically protected edge states.
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